Abstract
This paper studies the problem of solving parity games on graphs with bounded tree-width. Previous work by Obdržálek has produced an algorithm that uses \(n^{O(k^2)}\) time and \(n^{O(k^2)}\) space, where k is the tree-width of the graph that the game is played on. This paper presents an algorithm that uses n O(k logn) time and O(n + k logn) space. This is the fastest known algorithm for parity games whose tree-width k satisfies (in standard asymptotic notation) k ∈ ω(logn) and \(k \in o(\sqrt{n}/\log n)\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pp. 7–15. Morgan Kaufmann Publishers Inc., San Francisco (2001)
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8(2), 277–284 (1987)
Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)
Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, pp. 368–377. IEEE Computer Society Press, Washington, DC (1991)
Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of μ-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)
Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Information Processing Letters 68(3), 119–124 (1998)
Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 117–123. ACM/SIAM (2006)
McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied Logic 65(2), 149–184 (1993)
Mostowski, A.W.: Games with forbidden positions. Technical Report 78, University of Gdańsk (1991)
Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92. Springer, Heidelberg (2003)
Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7(3), 309–322 (1986)
Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)
Stirling, C.: Local model checking games (Extended abstract). In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)
Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science 200, 135–183 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag GmbH Berlin Heidelberg
About this paper
Cite this paper
Fearnley, J., Lachish, O. (2011). Parity Games on Graphs with Medium Tree-Width. In: Murlak, F., Sankowski, P. (eds) Mathematical Foundations of Computer Science 2011. MFCS 2011. Lecture Notes in Computer Science, vol 6907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22993-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-22993-0_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22992-3
Online ISBN: 978-3-642-22993-0
eBook Packages: Computer ScienceComputer Science (R0)