Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Complexity of the Cover Polynomials for Planar Graphs of Bounded Degree

  • Conference paper
Mathematical Foundations of Computer Science 2011 (MFCS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6907))

Abstract

The cover polynomials are bivariate graph polynomials that can be defined as weighted sums over all path-cycle covers of a graph. In [3], a dichotomy result for the cover polynomials was proven, establishing that their evaluation is #P-hard everywhere but at a finite set of points, where evaluation is in FP. In this paper, we show that almost the same dichotomy holds when restricting the evaluation to planar graphs. We even provide hardness results for planar DAGs of bounded degree. For particular subclasses of planar graphs of bounded degree and for variants thereof, we also provide algorithms that allow for polynomial-time evaluation of the cover polynomials at certain new points by utilizing Valiant’s holographic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Averbouch, I., Godlin, B., Makowsky, J.A.: A most general edge elimination polynomial. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 31–42. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polynomial in vertex-exponential time. In: FOCS 2008, pp. 677–686 (2008)

    Google Scholar 

  3. Bläser, M., Dell, H.: Complexity of the cover polynomial. In: ICALP, pp. 801–812 (2007)

    Google Scholar 

  4. Bläser, M., Dell, H., Fouz, M.: Complexity and approximability of the cover polynomial. Computation Complexity (accepted)

    Google Scholar 

  5. Bläser, M., Dell, H., Makowsky, J.A.: Complexity of the bollobás-riordan polynomial. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer Science – Theory and Applications. LNCS, vol. 5010, pp. 86–98. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bläser, M., Hoffmann, C.: On the complexity of the interlace polynomial. In: Albers, S., Weil, P. (eds.) 25th International Symposium on Theoretical Aspects of Computer Science (STACS 2008), Dagstuhl, Germany, pp. 97–108 (2008)

    Google Scholar 

  7. Bollobás, B., Riordan, O.: A Tutte polynomial for coloured graphs. Combinatorics, Probability and Computing 8(1-2), 45–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, J.-y., Lu, P., Xia, M.: Holographic algorithms with matchgates capture precisely tractable planar #CSP. CoRR abs/1008.0683 (2010)

    Google Scholar 

  9. Chung, F.R.K., Graham, R.L.: On the cover polynomial of a digraph. J. Combin. Theory Ser. B 65, 273–290 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discrete Applied Mathematics 108(1-2), 23–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Antona, O.M., Munarini, E.: The cycle-path indicator polynomial of a digraph. Advances in Applied Mathematics 25(1), 41–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial. Inform. Comput. 206(7), 908–929 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial of a planar graph. CoRR abs/0907.1724 (2009)

    Google Scholar 

  14. Hoffmann, C.: A most general edge elimination polynomial - thickening of edges. Fundam. Inform. 98(4), 373–378 (2010)

    MATH  Google Scholar 

  15. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. of the Cambridge Phil. Society 108(1), 35–53 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Linial, N.: Hard enumeration problems in geometry and combinatorics. SIAM J. Algebraic Discrete Methods 7(2), 331–335 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lotz, M., Makowsky, J.A.: On the algebraic complexity of some families of coloured Tutte polynomials. Advances in Applied Mathematics 32(1), 327–349 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Makowsky, J.A.: From a zoo to a zoology: Towards a general theory of graph polynomials. Theory of Computing Systems 43(3), 542–562 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Valiant, L.G.: Holographic algorithms (extended abstract). In: FOCS 2004: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 306–315. IEEE Computer Society, Washington, DC (2004)

    Chapter  Google Scholar 

  20. Vertigan, D.L.: The computational complexity of Tutte invariants for planar graphs. SIAM J. Comput. 35(3), 690–712 (2005)

    Article  MathSciNet  Google Scholar 

  21. Xia, M., Zhang, P., Zhao, W.: Computational complexity of counting problems on 3-regular planar graphs. Theoretical Computer Science 384(1), 111–125 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Bläser, M., Curticapean, R. (2011). The Complexity of the Cover Polynomials for Planar Graphs of Bounded Degree. In: Murlak, F., Sankowski, P. (eds) Mathematical Foundations of Computer Science 2011. MFCS 2011. Lecture Notes in Computer Science, vol 6907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22993-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22993-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22992-3

  • Online ISBN: 978-3-642-22993-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics