Nothing Special   »   [go: up one dir, main page]

Skip to main content

Stone Duality for Nominal Boolean Algebras with И

  • Conference paper
Algebra and Coalgebra in Computer Science (CALCO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6859))

Included in the following conference series:

Abstract

We define Boolean algebras over nominal sets with a function symbol И mirroring the И ‘fresh name’ quantifier (Banonas), and dual notions of nominal topology and Stone space. We prove a representation theorem over fields of nominal sets, and extend this to a Stone duality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramsky, S., Ghica, D.R., Murawski, A.S., Luke Ong, C.-H., Stark, I.D.B.: Nominal games and full abstraction for the nu-calculus. In: Proceedings of the 19th IEEE Symposium on Logic in Computer Science, LICS 2004, pp. 150–159. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  2. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic. Elsevier, Amsterdam (2007)

    Google Scholar 

  3. Bengtson, J., Parrow, J.: Formalising the π-Calculus Using Nominal Logic. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 63–77. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Bonsangue, M., Kurz, A.: Pi-calculus in logical form. In: Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science, LICS 2007, pp. 303–312. IEEE Computer Society Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  5. Burris, S., Sankappanavar, H.: A Course in Universal Algebra. Graduate Texts in Mathematics. Springer, Heidelberg (1981)

    Google Scholar 

  6. Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Information and Computation 186(2), 194–235 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardelli, L., Gordon, A.: Logical Properties of Name Restriction. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 46–60. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Cheney, J.: A simpler proof theory for nominal logic. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 379–394. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Cheney, J., Urban, C.: Nominal logic programming. ACM Transactions on Programming Languages and Systems (TOPLAS) 30(5), 1–47 (2008)

    Article  Google Scholar 

  10. Cîrstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.: Modal logics are coalgebraic. The Computer Journal (2009)

    Google Scholar 

  11. Dowek, G., Gabbay, M.J.: Permissive Nominal Logic. In: Proceedings of the 12th International ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming, PPDP 2010, pp. 165–176 (2010)

    Google Scholar 

  12. Fernández, M., Gabbay, M.J.: Nominal rewriting with name generation: abstraction vs. locality. In: Proceedings of the 7th ACM SIGPLAN International Symposium on Principles and Practice of Declarative Programming, PPDP 2005, pp. 47–58. ACM Press, New York (2005)

    Google Scholar 

  13. Gabbay, M.J.: Fresh Logic. Journal of Applied Logic 5(2), 356–387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gabbay, M.J.: Nominal Algebra and the HSP Theorem. Journal of Logic and Computation 19(2), 341–367 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gabbay, M.J.: A study of substitution, using nominal techniques and Fraenkel-Mostowski sets. Theoretical Computer Science 410(12-13), 1159–1189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gabbay, M.J.: Foundations of nominal techniques: logic and semantics of variables in abstract syntax. Bulletin of Symbolic Logic (2011) (in press)

    Google Scholar 

  17. Gabbay, M.J., Cheney, J.: A Sequent Calculus for Nominal Logic. In: Proceedings of the 19th IEEE Symposium on Logic in Computer Science, LICS 2004, pp. 139–148. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  18. Gabbay, M.J., Ciancia, V.: Freshness and Name-Restriction in Sets of Traces with Names. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 365–380. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Gabbay, M.J., Mathijssen, A.: Nominal universal algebra: equational logic with names and binding. Journal of Logic and Computation 19(6), 1455–1508 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gabbay, M.J., Pitts, A.M.: A New Approach to Abstract Syntax with Variable Binding. Formal Aspects of Computing 13(3-5), 341–363 (2001)

    Article  Google Scholar 

  21. Keenan, E., Westerståhl, D.: Generalized quantifiers in linguistics and logic. In: Van Benthem, J., Ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 837–894. Elsevier, Amsterdam (1996)

    Google Scholar 

  22. Kurz, A., Petrişan, D.: On universal algebra over nominal sets. Mathematical Structures in Computer Science 20, 285–318 (2010)

    Article  MATH  Google Scholar 

  23. Litak, T.: Algebraization of Hybrid Logic with Binders. In: Schmidt, R. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 281–295. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Lane, S.M.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer, Heidelberg (1971)

    MATH  Google Scholar 

  25. Manzonetto, G., Salibra, A.: Applying universal algebra to lambda calculus. Journal of Logic and Computation 20(4), 877–915 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. McCune, W.: Solution of the Robbins problem. Journal of Automated Reasoning 19, 263–276 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Menni, M.: About И-quantifiers. Applied Categorical Structures 11(5), 421–445 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pitts, A.M.: Nominal system T. In: Proceedings of the 37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL 2010, pp. 159–170. ACM Press, New York (2010)

    Google Scholar 

  29. Pitts, A.M.: Structural recursion with locally scoped names (September 2010) (submitted for publication)

    Google Scholar 

  30. Reed, J.: Hybridizing a logical framework. Electronic Notes in Theoretical Computer Science 174(6), 135–148 (2006); Proceedings of the International Workshop on Hybrid Logic (HyLo 2006)

    Article  Google Scholar 

  31. Shinwell, M.R., Pitts, A.M.: On a monadic semantics for freshness. Theoretical Computer Science 342(1), 28–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: Programming with Binders Made Simple. In: Proceedings of the 8th ACM SIGPLAN International Conference on Functional Programming, ICFP 2003, vol. 38, pp. 263–274. ACM Press, New York (2003)

    Chapter  Google Scholar 

  33. Staton, S.: Name-passing process calculi: operational models and structural operational semantics. Technical Report UCAM-CL-TR-688, University of Cambridge, Computer Laboratory (June 2007)

    Google Scholar 

  34. Tiu, A.: A logic for reasoning about generic judgments. Electronic Notes in Theoretical Computer Science 174(5), 3–18 (2007)

    Article  Google Scholar 

  35. Turner, D.C.: Nominal Domain Theory for Concurrency. PhD thesis, University of Cambridge (2009)

    Google Scholar 

  36. Tzevelekos, N.: Full abstraction for nominal general references. In: Proceedings of the 22nd IEEE Symposium on Logic in Computer Science, LICS 2007, pp. 399–410. IEEE Computer Society Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  37. Venema, Y.: Algebras and coalgebras. In: Blackburn, P., Van Benthem, J., Wolter, P. (eds.) Handbook of Modal Logic. Studies in logic and practical reasoning, ch. 6, vol. 3. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  38. Westerståhl, D.: Quantifiers in formal and natural languages. In: Handbook of Philosophical Logic. Synthèse, ch. 2, vol. 4, pp. 1–131. Reidel, Dordrechtz (1989)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gabbay, M.J., Litak, T., Petrişan, D. (2011). Stone Duality for Nominal Boolean Algebras with И. In: Corradini, A., Klin, B., Cîrstea, C. (eds) Algebra and Coalgebra in Computer Science. CALCO 2011. Lecture Notes in Computer Science, vol 6859. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22944-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22944-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22943-5

  • Online ISBN: 978-3-642-22944-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics