Abstract
We define Boolean algebras over nominal sets with a function symbol И mirroring the И ‘fresh name’ quantifier (Banonas), and dual notions of nominal topology and Stone space. We prove a representation theorem over fields of nominal sets, and extend this to a Stone duality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S., Ghica, D.R., Murawski, A.S., Luke Ong, C.-H., Stark, I.D.B.: Nominal games and full abstraction for the nu-calculus. In: Proceedings of the 19th IEEE Symposium on Logic in Computer Science, LICS 2004, pp. 150–159. IEEE Computer Society Press, Los Alamitos (2004)
Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic. Elsevier, Amsterdam (2007)
Bengtson, J., Parrow, J.: Formalising the π-Calculus Using Nominal Logic. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 63–77. Springer, Heidelberg (2007)
Bonsangue, M., Kurz, A.: Pi-calculus in logical form. In: Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science, LICS 2007, pp. 303–312. IEEE Computer Society Press, Los Alamitos (2007)
Burris, S., Sankappanavar, H.: A Course in Universal Algebra. Graduate Texts in Mathematics. Springer, Heidelberg (1981)
Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Information and Computation 186(2), 194–235 (2003)
Cardelli, L., Gordon, A.: Logical Properties of Name Restriction. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 46–60. Springer, Heidelberg (2001)
Cheney, J.: A simpler proof theory for nominal logic. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 379–394. Springer, Heidelberg (2005)
Cheney, J., Urban, C.: Nominal logic programming. ACM Transactions on Programming Languages and Systems (TOPLAS) 30(5), 1–47 (2008)
Cîrstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.: Modal logics are coalgebraic. The Computer Journal (2009)
Dowek, G., Gabbay, M.J.: Permissive Nominal Logic. In: Proceedings of the 12th International ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming, PPDP 2010, pp. 165–176 (2010)
Fernández, M., Gabbay, M.J.: Nominal rewriting with name generation: abstraction vs. locality. In: Proceedings of the 7th ACM SIGPLAN International Symposium on Principles and Practice of Declarative Programming, PPDP 2005, pp. 47–58. ACM Press, New York (2005)
Gabbay, M.J.: Fresh Logic. Journal of Applied Logic 5(2), 356–387 (2007)
Gabbay, M.J.: Nominal Algebra and the HSP Theorem. Journal of Logic and Computation 19(2), 341–367 (2009)
Gabbay, M.J.: A study of substitution, using nominal techniques and Fraenkel-Mostowski sets. Theoretical Computer Science 410(12-13), 1159–1189 (2009)
Gabbay, M.J.: Foundations of nominal techniques: logic and semantics of variables in abstract syntax. Bulletin of Symbolic Logic (2011) (in press)
Gabbay, M.J., Cheney, J.: A Sequent Calculus for Nominal Logic. In: Proceedings of the 19th IEEE Symposium on Logic in Computer Science, LICS 2004, pp. 139–148. IEEE Computer Society, Los Alamitos (2004)
Gabbay, M.J., Ciancia, V.: Freshness and Name-Restriction in Sets of Traces with Names. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 365–380. Springer, Heidelberg (2011)
Gabbay, M.J., Mathijssen, A.: Nominal universal algebra: equational logic with names and binding. Journal of Logic and Computation 19(6), 1455–1508 (2009)
Gabbay, M.J., Pitts, A.M.: A New Approach to Abstract Syntax with Variable Binding. Formal Aspects of Computing 13(3-5), 341–363 (2001)
Keenan, E., Westerståhl, D.: Generalized quantifiers in linguistics and logic. In: Van Benthem, J., Ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 837–894. Elsevier, Amsterdam (1996)
Kurz, A., Petrişan, D.: On universal algebra over nominal sets. Mathematical Structures in Computer Science 20, 285–318 (2010)
Litak, T.: Algebraization of Hybrid Logic with Binders. In: Schmidt, R. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 281–295. Springer, Heidelberg (2006)
Lane, S.M.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer, Heidelberg (1971)
Manzonetto, G., Salibra, A.: Applying universal algebra to lambda calculus. Journal of Logic and Computation 20(4), 877–915 (2010)
McCune, W.: Solution of the Robbins problem. Journal of Automated Reasoning 19, 263–276 (1997)
Menni, M.: About И-quantifiers. Applied Categorical Structures 11(5), 421–445 (2003)
Pitts, A.M.: Nominal system T. In: Proceedings of the 37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL 2010, pp. 159–170. ACM Press, New York (2010)
Pitts, A.M.: Structural recursion with locally scoped names (September 2010) (submitted for publication)
Reed, J.: Hybridizing a logical framework. Electronic Notes in Theoretical Computer Science 174(6), 135–148 (2006); Proceedings of the International Workshop on Hybrid Logic (HyLo 2006)
Shinwell, M.R., Pitts, A.M.: On a monadic semantics for freshness. Theoretical Computer Science 342(1), 28–55 (2005)
Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: Programming with Binders Made Simple. In: Proceedings of the 8th ACM SIGPLAN International Conference on Functional Programming, ICFP 2003, vol. 38, pp. 263–274. ACM Press, New York (2003)
Staton, S.: Name-passing process calculi: operational models and structural operational semantics. Technical Report UCAM-CL-TR-688, University of Cambridge, Computer Laboratory (June 2007)
Tiu, A.: A logic for reasoning about generic judgments. Electronic Notes in Theoretical Computer Science 174(5), 3–18 (2007)
Turner, D.C.: Nominal Domain Theory for Concurrency. PhD thesis, University of Cambridge (2009)
Tzevelekos, N.: Full abstraction for nominal general references. In: Proceedings of the 22nd IEEE Symposium on Logic in Computer Science, LICS 2007, pp. 399–410. IEEE Computer Society Press, Los Alamitos (2007)
Venema, Y.: Algebras and coalgebras. In: Blackburn, P., Van Benthem, J., Wolter, P. (eds.) Handbook of Modal Logic. Studies in logic and practical reasoning, ch. 6, vol. 3. Elsevier, Amsterdam (2007)
Westerståhl, D.: Quantifiers in formal and natural languages. In: Handbook of Philosophical Logic. Synthèse, ch. 2, vol. 4, pp. 1–131. Reidel, Dordrechtz (1989)
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gabbay, M.J., Litak, T., Petrişan, D. (2011). Stone Duality for Nominal Boolean Algebras with И. In: Corradini, A., Klin, B., Cîrstea, C. (eds) Algebra and Coalgebra in Computer Science. CALCO 2011. Lecture Notes in Computer Science, vol 6859. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22944-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-22944-2_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22943-5
Online ISBN: 978-3-642-22944-2
eBook Packages: Computer ScienceComputer Science (R0)