Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improved Inapproximability Results for Counting Independent Sets in the Hard-Core Model

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2011, RANDOM 2011)

Abstract

We study the computational complexity of approximately counting the number of independent sets of a graph with maximum degree Δ. More generally, for an input graph G = (V,E) and an activity λ > 0, we are interested in the quantity Z G (λ) defined as the sum over independent sets I weighted as w(I) = λ |I|. In statistical physics, Z G (λ) is the partition function for the hard-core model, which is an idealized model of a gas where the particles have non-negibile size. Recently, an interesting phase transition was shown to occur for the complexity of approximating the partition function. Weitz showed an FPAS for the partition function for any graph of maximum degree Δ when Δ is constant and \(\lambda<\lambda_c(\mathbb{T}_\Delta):=(\Delta-1)^{\Delta-1}/(\Delta-2)^\Delta\). The quantity \(\lambda_c(\mathbb{T}_\Delta)\) is the critical point for the so-called uniqueness threshold on the infinite, regular tree of degree Δ. On the other side, Sly proved that there does not exist efficient (randomized) approximation algorithms for \(\lambda_c(\mathbb{T}_\Delta)<\lambda<\lambda_c(\mathbb{T}_\Delta)+\varepsilon(\Delta)\), unless NP=RP, for some function ε(Δ) > 0. We remove the upper bound in the assumptions of Sly’s result for Δ ≠ 4,5, that is, we show that there does not exist efficient randomized approximation algorithms for all \(\lambda>\lambda_c(\mathbb{T}_\Delta)\) for Δ = 3 and Δ ≥ 6. Sly’s inapproximability result uses a clever reduction, combined with a second-moment analysis of Mossel, Weitz and Wormald which prove torpid mixing of the Glauber dynamics for sampling from the associated Gibbs distribution on almost every regular graph of degree Δ for the same range of λ as in Sly’s result. We extend Sly’s result by improving upon the technical work of Mossel et al., via a more detailed analysis of independent sets in random regular graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van den Berg, J., Steif, J.E.: Percolation and the hard-core lattice gas model. Stochastic Processes and their Applications 49(2), 179–197 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dyer, M., Frieze, A.M., Jerrum, M.: On counting independent sets in sparse graphs. SIAM J. Comput. 31(5), 1527–1541 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Galanis, A., Ge, Q., Štefankovič, D., Vigoda, E., Yang, L.: Improved Inapproximability Results for Counting Independent Sets in the Hard-Core Model (2011) Preprint available from the arXiv at, http://arxiv.org/abs/1105.5131

  4. Gaunt, D.S., Fisher, M.E.: Hard-Sphere Lattice Gases. I. Plane-Square Lattice. Journal of Chemical Physics 43(8), 2840–2863 (1965)

    Article  MathSciNet  Google Scholar 

  5. Greenhill, C.: The complexity of counting colourings and independent sets in sparse graphs and hypergraphs. Computational Complexity 9(1), 52–72 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a uniform distribution distribution. Theoretical Computer Science 43(2-3), 169–186 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kelly, F.P.: Loss Networks. Annals of Applied Probability 1(3), 319–378 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  9. Molloy, M., Robalewska, H., Robinson, R.W., Wormald, N.C.: 1-factorizations of random regular graphs. Random Structures and Algorithms 10(3), 305–321 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mossel, E., Weitz, D., Wormald, N.: On the hardness of sampling independent sets beyond the tree threshold. Probability Theory and Related Fields 143(3-4), 401–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sly, A.: Computational Transition at the Uniqueness Threshold. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 287-296 (2010), Full version available from the arXiv at, http://arxiv.org/abs/1005.5584

  12. Štefankovič, D., Vempala, S., Vigoda, E.: Adaptive Simulated Annealing: A Near-optimal Connection between Sampling and Counting. Journal of the ACM 56(3), 1–36 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Strzebonski, A.W.: Cylindrical algebraic decomposition using validated numerics. J. Symb. Comput. 41(9), 1021–1038 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tarski, A.: RAND Corporation, Santa Monica, Calif. RAND Corporation, Santa Monica (1948)

    Google Scholar 

  15. Valiant, L.G.: The Complexity of Enumeration and Reliability Problems. SIAM J. Computing 8(3), 410–421 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weitz, D.: Counting independent sets up to the tree threshold. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 140–149 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galanis, A., Ge, Q., Štefankovič, D., Vigoda, E., Yang, L. (2011). Improved Inapproximability Results for Counting Independent Sets in the Hard-Core Model. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2011 2011. Lecture Notes in Computer Science, vol 6845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22935-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22935-0_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22934-3

  • Online ISBN: 978-3-642-22935-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics