Nothing Special   »   [go: up one dir, main page]

Skip to main content

Logical Formalisation and Analysis of the Mifare Classic Card in PVS

  • Conference paper
Interactive Theorem Proving (ITP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6898))

Included in the following conference series:

  • 739 Accesses

Abstract

The way that Mifare Classic smart cards work has been uncovered recently [6,8] and several vulnerabilities and exploits have emerged. This paper gives a precise logical formalisation of the essentials of the Mifare Classic card, in the language of a theorem prover (PVS). The formalisation covers the LFSR, the filter function and (parts of) the authentication protocol, thus serving as precise documentation of the card’s ingredients and their properties. Additionally, the mathematics is described that makes two key-retrieval attacks from [6] work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, M., Blanchet, B., Comon-Lundh, H.: Models and proofs of protocol security: A progress report. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 35–49. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y.: Computational indistinguishability logic. In: Computer and Communications Security, pp. 375–386. ACM, New York (2010)

    Google Scholar 

  3. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based cryptographic proofs. In: Principles of Programming Languages, pp. 90–101. ACM Press, New York (2009)

    Google Scholar 

  4. The Boyer-Moore theorem prover, http://www.computationallogic.com/software/nqthm/

  5. Cortier, V., Kremer, S., Warinschi, B.: A survey of symbolic methods in computational analysis of cryptographic systems. Journ. Automated Reasoning 46(3-4), 225–259 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R., Schreur, R.W., Jacobs, B.: Dismantling MIFARE classic. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL – A Proof Assistant for Higher-Order Logic. In: Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.) LNCS, vol. 2283, p. 3. Springer, Heidelberg (2002)

    Google Scholar 

  8. Nohl, K., Evans, D., Plötz, S., Plötz, H.: Reverse-engineering a cryptographic RFID tag. In: 17th USENIX Security Symposium, San Jose, CA, USA, pp. 185–194 (2008)

    Google Scholar 

  9. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.: PVS: Combining specification, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  10. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journ. of Computer Security 6, 85–128 (1998)

    Article  Google Scholar 

  11. The Coq proof assistant, http://coq.inria.fr

  12. The Isabelle proof assistant, http://isabelle.in.tum.de

  13. Solomon, W.G.: Shift register sequences. Aegean Park Press, Laguna Hills (1982)

    Google Scholar 

  14. The PVS Specification and Verification System, http://pvs.csl.sri.com

  15. van Tilborg, H.C.A.: Fundamentals of Cryptology: a professional reference and interactive tutorial. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  16. Zanella Béguelin, S.: Formal Certification of Game-Based Cryptographic Proofs. PhD thesis, École Nationale Supérieure des Mines de Paris (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jacobs, B., Wichers Schreur, R. (2011). Logical Formalisation and Analysis of the Mifare Classic Card in PVS. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds) Interactive Theorem Proving. ITP 2011. Lecture Notes in Computer Science, vol 6898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22863-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22863-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22862-9

  • Online ISBN: 978-3-642-22863-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics