Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Differentiation in ACL2

  • Conference paper
Interactive Theorem Proving (ITP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6898))

Included in the following conference series:

Abstract

In this paper, we describe recent improvements to the theory of differentiation that is formalized in ACL2(r). First, we show how the normal rules for the differentiation of composite functions can be introduced in ACL2(r). More important, we show how the application of these rules can be largely automated, so that ACL2(r) can automatically define the derivative of a function that is built from functions whose derivatives are already known. Second, we show a formalization in ACL2(r) of the derivatives of familiar functions from calculus, such as the exponential, logarithmic, power, and trigonometric functions. These results serve as the starting point for the automatic differentiation tool described above. Third, we describe how users can add new functions and their derivatives, to improve the capabilities of the automatic differentiator. In particular, we show how to introduce the derivative of the hyperbolic trigonometric functions. Finally, we give some brief highlights concerning the implementation details of the automatic differentiator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Community portal for automatic differentiation, http://www.autodiff.org

  2. Corliss, G., Griewank, A., Bischof, C., Carle, A., Hovland, P.: ADIFOR: Generating derivative codes from fortran programs. Scientific Programming (1) (1991)

    Google Scholar 

  3. Roh, L., Bischof, C., Mauer-oats, A.: ADIC: An extensible automatic differentiation tool for ANSI-C 27, 1427–1456 (1997)

    Google Scholar 

  4. Hovland, P.D., Bischof, C.H., Norris, B.: On the implementation of automatic differentiation tools. Higher Order Symbol. Comput. 21, 311–331 (2008)

    Article  MATH  Google Scholar 

  5. Corliss, G., Faure, C., Griewank, A., Hascoet, L., Naumann, U. (eds.): Automatic Differentiation of Algorithms: From Simulation to Optimization. CIS. Springer, Heidelberg (2001); Selected papers from the AD2000 conference, Nice, France (June 2000)

    Google Scholar 

  6. Gamboa, R.: Continuity and differentiability in ACL2. In: Kaufmann, M., Manolios, P., Moore, J.S. (eds.) Computer-Aided Reasoning: ACL2 Case Studies, ch. 18. Kluwer Academic Press, Dordrecht (2000)

    Google Scholar 

  7. Gamboa, R., Cowles, J.: The chain rule and friends in ACL2(r). In: Proceedings of the Eighth International Workshop of the ACL2 Theorem Prover and its Applications, ACL2 2009 (2009)

    Google Scholar 

  8. Gamboa, R., Kaufmann, M.: Nonstandard analysis in ACL2. Journal of Automated Reasoning 27(4), 323–351 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Griewank, A., Walthe, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Other Titles in Applied Mathematics. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  10. Kaufmann, M.: Modular proof: The fundamental theorem of calculus. In: Kaufmann, M., Manolios, P., Moore, J.S. (eds.) Computer-Aided Reasoning: ACL2 Case Studies, ch. 6, Kluwer Academic Press, Dordrecht (2000)

    Google Scholar 

  11. Pearlmutter, A.B., Siskind, J.M.: Reverse-mode AD in a functional framework: Lambda the ultimate backpropagator. ACM Trans. Program. Lang. Syst. 30, 7:1–7:36 (2008)

    Google Scholar 

  12. Tadjouddine, E.M.: On formal certification of AD transformations. In: Barth, T.J., et al. (eds.) MFCS 1978. LNCSE, vol. 64, pp. 23–33. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reid, P., Gamboa, R. (2011). Automatic Differentiation in ACL2. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds) Interactive Theorem Proving. ITP 2011. Lecture Notes in Computer Science, vol 6898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22863-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22863-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22862-9

  • Online ISBN: 978-3-642-22863-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics