Nothing Special   »   [go: up one dir, main page]

Skip to main content

Gene Prediction by Multiple Spliced Alignment

  • Conference paper
Advances in Bioinformatics and Computational Biology (BSB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6832))

Included in the following conference series:

  • 508 Accesses

Abstract

With recent advances in sequencing technologies, a huge amount of DNA sequences become available year after year. In order to obtain useful information on these sequences, we need to process them in search of biologically meaningful regions. The genes are amongst the most important regions of a genome and the task of locating them in a DNA of interest is called the gene prediction problem. This problem can be addressed in several ways, and one of the most promising methods relies on homology information between the genomic DNA and previous annotated sequences (proteins, cDNAs and ESTs). In this paper we generalize a traditional formulation of the gene prediction problem and use this new formulation in the development of three gene identification tools. All these programs were tested on a benchmark of 240 human genomic sequences and the results obtained compare favorably with those achieved by other gene prediction tools available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burge, C., Karlin, S.: Prediction of Complete Gene Structures in Human Genomic DNA. Journal of Molecular Biology 268(1), 78–94 (1997)

    Article  Google Scholar 

  2. Burset, M., Guigó, R.: Evaluation of Gene Structure Prediction Programs. Genomics 34(3), 353–367 (1996)

    Article  Google Scholar 

  3. Florea, L., Hartzell, G., Zhang, Z., Rubin, G., Miller, W.: A Computer Program for Aligning a cDNA Sequence with a Genomic Sequence. Genome Research 8(9), 967–974 (1998)

    Google Scholar 

  4. Gelfand, M.S., Mironov, A.A., Pevzner, P.A.: Gene Recognition via Spliced Sequence Alignment. Proc. Natl. Acad. Sci (USA) 93(17), 9061–9066 (1996)

    Article  Google Scholar 

  5. Guigó, R.: Assembling Genes from Predicted Exons in Linear Time with Dynamic Programming. Journal of Computational Biology 5(4), 681–702 (1998)

    Article  Google Scholar 

  6. Gusfield, D.: Efficient Methods for Multiple Sequence Alignment with Guaranteed Error Bounds. Bulletin of Mathematical Biology 5(1), 141–154 (1993)

    Article  MATH  Google Scholar 

  7. Kishi, R.M.: Identificação de Genes e o Problema do Alinhamento Spliced Múltiplo. Master Thesis. Faculdade de Computaoção/UFMS (December 2010)

    Google Scholar 

  8. Knight, J., Myers, E.W.: Super-pattern and Matching. Algorithmica 13, 211–243 (1995)

    Article  MATH  Google Scholar 

  9. Majoros, W.H.: Methods for Computational Gene Prediction. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  10. Mathé, C., Sagot, M.-F., Schiex, T., Rouzé, P.: Current Methods of Gene Prediction, their Strengths and Weaknesses. Nucleic Acids Research 30(19), 4103–4117 (2002)

    Article  Google Scholar 

  11. Mott, R.: EST_Genome: a Program to Align Spliced DNA Sequences to Unspliced Genomic DNA. Comput. Appl. Biosci. 13(4), 477–478 (1997)

    Google Scholar 

  12. Nicolas, F., Rivals, E.: Hardness Results for the Center and Median String Problems Under the Weighted and Unweighted Edit Distances. Journal of Discrete Algorithms 3(2-4), 390–415 (2004)

    Article  MATH  Google Scholar 

  13. The ENCODE Project Consortium: The ENCODE (Encyclopedia of DNA Elements) Project. Science 306(5696), 636–640 (2004)

    Google Scholar 

  14. Sayers, E.W., et al.: Database Resources of the National Center for Biotechnology Information. Nucleic Acids Research 37(suppl. 1), D5–D15 (2008)

    Google Scholar 

  15. Stanke, M., Schöffmman, O., Morgenstern, B., Waack, S.: Gene Prediction with a Hidden Markov Model and a New Intron Submodel. Bioinformatics 19(suppl. 2), II215–II225 (2003)

    Google Scholar 

  16. Usuka, J., Zhu, W., Brendel, V.: Optimal Spliced Alignment of Homologous cDNA to a Genomic DNA Template. Bioinformatics 16(3), 203–211 (2000)

    Article  Google Scholar 

  17. Wheelan, S.J., Church, D.M., Ostell, J.M.: Spidey: a Tool for mRNA-to-genomic Alignments. Genome Research 11(11), 1952–1957 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kishi, R.M., dos Santos, R.F., Adi, S.S. (2011). Gene Prediction by Multiple Spliced Alignment. In: Norberto de Souza, O., Telles, G.P., Palakal, M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2011. Lecture Notes in Computer Science(), vol 6832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22825-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22825-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22824-7

  • Online ISBN: 978-3-642-22825-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics