Nothing Special   »   [go: up one dir, main page]

Skip to main content

Partial Orders and Logical Concept Analysis to Explore Patterns Extracted by Data Mining

  • Conference paper
Conceptual Structures for Discovering Knowledge (ICCS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6828))

Included in the following conference series:

Abstract

Data mining techniques are used in order to discover emerging knowledge (patterns) in databases. The problem of such techniques is that there are, in general, too many resulting patterns for a user to explore them all by hand. Some methods try to reduce the number of patterns without a priori pruning. The number of patterns remains, nevertheless, high. Other approaches, based on a total ranking, propose to show to the user the top-k patterns with respect to a measure. Those methods do not take into account the user’s knowledge and the dependencies that exist between patterns. In this paper, we propose a new way for the user to explore extracted patterns. The method is based on navigation in a partial order over the set of all patterns in the Logical Concept Analysis framework. It accommodates several kinds of patterns and the dependencies between patterns are taken into account thanks to partial orders. It allows the user to use his/her background knowledge to navigate through the partial order, without a priori pruning. We illustrate how our method can be applied on two different tasks (software engineering and natural language processing) and two different kinds of patterns (association rules and sequential patterns).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allard, P., Ferré, S., Ridoux, O.: Discovering functional dependencies and association rules by navigating in a lattice of OLAP views. In: Concept Lattices and Their Applications, pp. 199–210. CEUR-WS (2010)

    Google Scholar 

  2. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Int. Conf. on Management of Data. ACM Press, New York (1993)

    Google Scholar 

  3. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Int. Conf. on Data Engineering. IEEE, Los Alamitos (1995)

    Google Scholar 

  4. Cellier, P., Charnois, T.: Fouille de données séquentielle d’itemsets pour l’apprentissage de patrons linguistiques. Traitement Automatique des Langues Naturelles (short paper) (2010)

    Google Scholar 

  5. Cellier, P., Ducassé, M., Ferré, S., Ridoux, O.: Formal concept analysis enhances fault localization in software. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 273–288. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Casas-Garriga, G.: Summarizing sequential data with closed partial orders. In: SIAM International Data Mining Conference (SDM) (2005)

    Google Scholar 

  7. Crémilleux, B., Soulet, A., Klema, J., Hébert, C., Gandrillon, O.: Discovering Knowledge from Local Patterns in SAGE data. IGI Publishing (2008)

    Google Scholar 

  8. Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (1990/2001)

    Google Scholar 

  9. Ferré, S.: Camelis: a logical information system to organize and browse a collection of documents. Int. J. General Systems 38(4) (2009)

    Google Scholar 

  10. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Advances in Knowledge Discovery and Data Mining. American Association for Artificial Intelligence (1996)

    Google Scholar 

  11. Ferré, S., Ridoux, O.: An introduction to logical information systems. Information Processing & Management 40(3), 383–419 (2004)

    Article  MATH  Google Scholar 

  12. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Proc. of the Int. Conf. on Conceptual Structures: Broadening the Base, ICCS 2001, pp. 129–142. Springer, Heidelberg (2001)

    Google Scholar 

  13. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  14. Jay, N., Kohler, F., Napoli, A.: Analysis of social communities with iceberg and stability-based concept lattices. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 258–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Kontonasios, K., De Bie, T.: An information-theoretic approach to finding informative noisy tiles in binary databases. In: Proc. of the SIAM Int. Conf. on Data Mining, pp. 153–164 (2010)

    Google Scholar 

  16. Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Vis. Comput. Graph. 8(1), 1–8 (2002)

    Article  MathSciNet  Google Scholar 

  17. Kuznetsov, S.O.: On stability of a formal concept. Annals of Mathematics and Artificial Intelligence. Springer Netherlands ACM (2007)

    Google Scholar 

  18. Marinica, C., Guillet, F.: Knowledge-based interactive postmining of association rules using ontologies. IEEE Trans. Knowl. Data Eng. (2010)

    Google Scholar 

  19. Marinica, C., Olaru, A., Guillet, F.: User-driven association rule mining using a local algorithm. In: Int. Conf. on Enterprise Information Systems (ICEIS), vol. (2), pp. 200–205 (2009)

    Google Scholar 

  20. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Plantevit, M., Crémilleux, B.: Condensed representation of sequential patterns according to frequency-based measures. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 155–166. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent itemsets with convertible constraints. In: Int. Conf. on Data Engineering. IEEE computer society, Los Alamitos (2001)

    Google Scholar 

  23. Richards, D., Malik, U.: Mining propositional knowledge bases to discover multi-level rules. In: Zaïane, O.R., Simoff, S.J., Djeraba, C. (eds.) MDM/KDD 2002 and KDMCD 2002. LNCS (LNAI), vol. 2797, pp. 199–216. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.): Visual Data Mining. Springer, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cellier, P., Ferré, S., Ducassé, M., Charnois, T. (2011). Partial Orders and Logical Concept Analysis to Explore Patterns Extracted by Data Mining. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds) Conceptual Structures for Discovering Knowledge. ICCS 2011. Lecture Notes in Computer Science(), vol 6828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22688-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22688-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22687-8

  • Online ISBN: 978-3-642-22688-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics