Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient EA with Multipoint Guided Crossover for Bi-objective Graph Coloring Problem

  • Conference paper
Contemporary Computing (IC3 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 168))

Included in the following conference series:

Abstract

Graph Coloring Problem is a well-studied classical NP-hard combinatorial problem. Several well-known heuristics and evolutionary approaches exist to solve single-objective graph coloring problem. We have considered a bi-objective variant of graph coloring problem, in which the number of colors used and the corresponding penalty which is incurred due to coloring the end-points of an edge with same color, are simultaneously minimized. In this paper, we have presented an evolutionary approach with Multipoint Guided Crossover (MPGX) to minimize both objectives simultaneously. On applying proposed evolutionary algorithm over standard graph coloring problem instances, a guaranteed solution to the single-objective graph coloring problem is achieved. We have adapted a few well-known heuristics which are evolved for single-objective graph coloring problem to generate set of solutions for bi-objective graph coloring problem and obtained Pareto fronts. Empirical results show that proposed evolutionary algorithm with simple Multipoint Guided Crossover generates superior or (near-) equal solutions in comparison with the adapted heuristic solutions as well as with evolutionary algorithm solutions using a few crossover (Penalty-based Color Partitioning Crossover (PCPX) and Degree Based Crossover (DBX)) operators across entire Pareto front for considered bi-objective variant of graph coloring problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burke, E., Petrovic, S.: Recent research directions in automated timetabling. European J. operation research 140(2), 266–280 (2002)

    Article  MATH  Google Scholar 

  2. Davis, T.: The mathematics of sudoku (2010), http://www.geometer.org/mathcircles/sudoku.pdf

  3. Garey, M.R., Johnson, D.S., So, H.C.: An application of graph coloring to printed circuit testing. IEEE Transactions on Circuits and Systems 23(10), 591–599 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, NY (1972)

    Chapter  Google Scholar 

  5. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Computer and System Sciences 57(2), 187–199 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing 3(6), 103–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brelaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4), 251–256 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caramia, M., Dell’Olmo, P.: Bounding vertex coloring by truncated multistage branch and bound. Networks 44(4), 231–242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mehrotra, A., Trick, M.A.: A column generation approach for graph coloring. J. Computing (JOC) 8(4), 344–354 (1996)

    MATH  Google Scholar 

  10. Zoellner, J., Beall, C.: A breakthrough in spectrum conserving frequency assignment technology. IEEE Trans. Electromag. Compact. 19(3), 313–319 (1977)

    Article  Google Scholar 

  11. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring algorithms. J. ACM 30(3), 417–427 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marino, A., Prugel-Bennett, A., Glass, C.A.: Improving graph coloring with lin-ear programmng and genetic algorithms. In: Miettinen, K., Makela, M., Toivanen, J. (eds.) Proc. Evolutionary Algorithms in Engineering and Computer Science (EU-ROGEN), Jyvaskyld, Finland, pp. 113–118. John Wiley & Sons, Chichester (1999)

    Google Scholar 

  13. Al-Omari, H., Sabri, K.E.: New graph coloring algorithms. J. Mathematics and Statistics, 739–741 (2006)

    Google Scholar 

  14. Croitoru, C., Luchian, H., Gheorghies, O., Apetrei, A.: A new genetic graph coloring heuristic. In: Computational Symphosium on Graph Coloring and its Generalizations, pp. 63–74 (2002)

    Google Scholar 

  15. Drechsler, N., Gunther, W., Drechsler, R.: Efficient graph coloring by evolutionary algorithms. In: Reusch, B. (ed.) Proc. Int. Conf. Computational Intelligence, Theory and Applications, pp. 30–39. Springer, London (1999)

    Google Scholar 

  16. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Combinatorial Optimization 3(4), 379–397 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Han, L., Han, Z.: A novel bi-objective genetic algorithm for the graph coloring problem. In: Proc. Int. Conf. Computer Modeling and Simulation, Sanya, Chaina, pp. 3–6. IEEE Press, India (2010)

    Google Scholar 

  18. Huang, F., Chen, G.: A symmetry-breaking approach of the graph coloring problem with gas. In: Miettinen, K., Makela, M.M., Toivanen, J. (eds.) Proc. Int. Conf. Computer Supported Cooperative Work in Design, pp. 717–719. IEEE Press, Xiamen (2004)

    Google Scholar 

  19. Kumar, R., Tolay, P., Tiwary, S.: Enhancing solution quality of the biobjective graph coloring problem using hybridization of EA. In: Köppen, M., et al. (eds.) Proc. Genetic and Evolutionary Computation Conference (GECCO), pp. 547–554. ACM Press, Atlanta (2008)

    Chapter  Google Scholar 

  20. Eiben, A.E., van der Hauw, J.K.: Graph coloring with adaptive genetic algorithms. Technical Report TR 96-11, Leiden University (1996)

    Google Scholar 

  21. Jazkiewicz, A.: Genetic local search for multiobjective combinatorial optimization. European J. Operational Research 137(1), 50–71 (2002)

    Article  Google Scholar 

  22. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712–731 (2007)

    Article  Google Scholar 

  24. Deb, K., Jain, S.: Running performance metrics for evolutionary multiobjective optimization. In: Wang, L., Tan, K.C., Furuhashi, T., Kim, J.H., Yao, X. (eds.) Proc. Simulated Evolution And Learning (SEAL), Orchid Country Club, Singapore, pp. 13–20. ACM Press, New York (2002)

    Google Scholar 

  25. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  26. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. PhD thesis, Swiss Federal Institute of Technology Zurich (1999)

    Google Scholar 

  27. Knowles, J.D., Corne, D.W.: On metrics for comparing nondominated sets. In: Proc. Congress Evolutionary Computation (CEC), Honolulu, Hawaii, pp. 711–716. IEEE Press, Los Alamitos (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saha, S., Baboo, G., Kumar, R. (2011). An Efficient EA with Multipoint Guided Crossover for Bi-objective Graph Coloring Problem. In: Aluru, S., et al. Contemporary Computing. IC3 2011. Communications in Computer and Information Science, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22606-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22606-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22605-2

  • Online ISBN: 978-3-642-22606-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics