Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Parallel Fusion Method for Heterogeneous Multi-sensor Transportation Data

  • Conference paper
Modeling Decision for Artificial Intelligence (MDAI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6820))

Abstract

Information fusion technology has been introduced for data analysis in intelligent transportation systems (ITS) in order to generate a more accurate evaluation of the traffic state. The data collected from multiple heterogeneous traffic sensors are converted into common traffic state features, such as mean speed and volume. Afterwards, we design a hierarchical evidential fusion model (HEFM) based on D-S Evidence Theory to implement the feature-level fusion. When the data quantity reaches a large amount, HEFM can be parallelized in data-centric mode, which mainly consists of region-based data decomposition by quadtree and fusion task scheduling. The experiments are conducted to testify the scalability of this parallel fusion model on accuracy and efficiency as the numbers of decomposed sub-regions and cyberinfrastructure computing nodes increase. The results show that significant speedups can be achieved without loss in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kumar, P., Singh, V., Reddy, D.: Advanced Traveler Information System for Hyderabad City. IEEE Transactions on Intelligent Transportation Systems 6(1), 26–37 (2005)

    Article  Google Scholar 

  2. Dailey, D.: A Statistical Algorithm for Estimating Speed from Single Loop Volume and Occupancy Measurements. Transportation Research Part B: Methodological 33(5), 313–322 (1999)

    Article  Google Scholar 

  3. Coifman, B.: Improved Velocity Estimation using Single Loop Detectors. Transportation Research Part A: Policy and Practice 35(10), 863–880 (2001)

    Google Scholar 

  4. Quiroga, C.A., Bullock, D.: Travel Time Studies with Global Positioning and Geographic Information Systems: An Integrated Methodology. Transportation Research Part C: Emerging Technologies 6(1/2), 101–127 (1998)

    Article  Google Scholar 

  5. Cho, Y., Rice, J.: Estimating Velocity Fields on a Freeway from Low-resolution Videos. IEEE Transactions on Intelligent Transportation Systems 7(4), 463–469 (2006)

    Article  Google Scholar 

  6. Sohn, K., Hwang, K.: Space-Based Passing Time Estimation on a Free-Way using Cell Phones as Traffic Probes. IEEE Transactions on Intelligent Transportation Systems 9(3), 559–568 (2008)

    Article  Google Scholar 

  7. El Faouzi, N.E., Lefevre, E.: Classifiers and Distance-Based Evidential Fusion for Road Travel Time Estimation. In: Dasarathy, B.V. (ed.) Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2006. SPIE, vol. 6242, pp. 1–16. SPIE, Bellingham (2006)

    Google Scholar 

  8. El Faouzi, N.E.: Data Fusion in Road Traffic Engineering: An Overview. In: Dasarathy, B.V. (ed.) Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2004. SPIE, vol. 5434, pp. 360–371. SPIE, Bellingham (2004)

    Chapter  Google Scholar 

  9. Steinberg, A.N., Bowman, C.L., White, C.E.: Revisions to the JDL Data Fusion Model. In: Dasarathy, B.V. (ed.) Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 1999. SPIE, vol. 3719, pp. 430–441. SPIE, Bellingham (1999)

    Google Scholar 

  10. Gartner, N.H., Messer, C., Rathi, A.K.: Monograph on Traffic Flow Theory. Fed. Highway Admin. (1996)

    Google Scholar 

  11. Murphy, R.R.: Dempster-Shafer Theory for Sensor Fusion in Autonomous Mobile Robots. IEEE Transactions on Robotics and Automation 14(2), 197–206 (1998)

    Article  Google Scholar 

  12. Sumner, R.: Data Fusion in PathFinder and TravTek. In: 2nd IEEE Vehicle Navigation and Information Systems Conference, pp. 71–75. IEEE Press, New York (1991)

    Google Scholar 

  13. Cheu, R.L., Lee, D.H., Xie, C.: An Arterial Speed Estimation Model Fusing Data from Stationary and Mobile Sensors. In: 4th IEEE International Conference on Intelligent Transportation Systems, pp. 573–578. IEEE Press, New York (2001)

    Google Scholar 

  14. Choi, K., Chung, Y.: A Data Fusion Algorithm for Estimating Link Travel Time. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations 7(3/4), 235–260 (2002)

    Article  MATH  Google Scholar 

  15. Klein, L.: Dempster-Shafer Data Fusion at the Traffic Management Center. In: 79th Annual Transportation Research Board Meeting, Washington, Paper No. 00–1211 (2000)

    Google Scholar 

  16. Hellinga, B.R., Fu, L.P.: Reducing Bias in Probe-Based Arterial Link Travel Time Estimates. Transportation Research Part C: Emerging Technologies 10(4), 257–273 (2002)

    Article  Google Scholar 

  17. Nagel, K., Rickert, M.: Parallel Implementation of the TRANSIMS Micro-Simulation. Parallel Computing 27(12), 1611–1639 (2001)

    Article  MATH  Google Scholar 

  18. Krishnan, R., Hodge, V., Austin, J., Polak, J.W.: A Computationally Efficient Method for Online Identification of Traffic Control Intervention Measures. In: 42nd Annual Meeting of the Universities Transport Study Group, pp. 1–11. Plymouth (2010)

    Google Scholar 

  19. O’Cearbhaill, E.A., O’Mahony, M.: Parallel Implementation of a Transportation Network Model. Journal of Parallel and Distributed Computing 65(1), 1–14 (2005)

    Article  Google Scholar 

  20. Samet, H.: Applications of Spatial Data Structures. Addison Wesley, MA (1990)

    Google Scholar 

  21. Samet, H.: The Quadtree and Related Hierarchical Data Structures. ACM Computing Surveys 20(4), 187–260 (1984)

    Article  MathSciNet  Google Scholar 

  22. Hoel, E.G., Samet, H.: Data-Parallel Primitives for Spatial Operations. In: 24th International Conference on Parallel Processing, Oconomowoc, pp. 184–191 (1995)

    Google Scholar 

  23. Nabrzyski, J., Schopf, J.M., Weglarz, J.: Grid Resource Management. Kluwer Publishing, Netherlands (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xia, Y., Wu, C., Kong, Q., Shan, Z., Kuang, L. (2011). A Parallel Fusion Method for Heterogeneous Multi-sensor Transportation Data. In: Torra, V., Narakawa, Y., Yin, J., Long, J. (eds) Modeling Decision for Artificial Intelligence. MDAI 2011. Lecture Notes in Computer Science(), vol 6820. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22589-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22589-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22588-8

  • Online ISBN: 978-3-642-22589-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics