Abstract
Face detection is the method of locating human faces in a given image under all lighting conditions, scales and orientations. Face is a unique feature of every person and the same is applicable to pupil, iris and fingerprints which are also unique as well. With the improvement of technology, neural network and processors’ high capacity have resulted in induction of informatics in this area. Automatic face detection and recognition has been drawing the main attention in the recent years. We have proposed here an accurate face detection system that can detect faces under different contrast with hurdles like faces with spectacles, heavy beard and even closed eyes. We use Gabor filter bank with varying threshold for feature extraction and face detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amit, Y., Geman, D.: A computational model for visualselection. Neural Computation 11, 1691–1715 (1999)
Crow, F.: Summed-area tables for texture mapping. Proceedings of SIGGRAPH 18(3), 207–212 (1984)
Fleuret, F., Geman, D.: Coarse-to-fine face detection. Int. J. Computer Vision 41, 85–107 (2001)
Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(9), 891–906 (1991)
Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research 20, 847–856 (1980)
Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two dimensional visual cortical filters. J. Optical Soc. Amer. 2(7), 1160–1169 (1985)
Gabor, D.: Theory of communication. J. IEE 93, 429–457 (1946)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)
Greenspan, H., Belongie, S., Gooodman, R., Perona, P., Rakshit, S., Anderson, C.: Over complete steerable pyramid filters and rotation invariance. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (1994)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Patt. Anal. Mach. Intell. 20(11), 1254–1259 (1998)
John, G., Kohavi, R., Feger, P.: Irrelevant features and the subset selection problem. In: Machine Learning Conference Proceedings (1994)
Osuna, E., Freund, R., Girosi, F.: Training support vector machines: An application to face detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (1997a)
Papageorgiou, C., Oren, M., Poggio, T.: A general framework for object detection. In: International Conference of Computer Vision (1998)
Quinlan, J.: Induction of decision trees. Machine Learning 1, 81–106 (1986)
Roth, D., Yang, M., Ahuja, N.: A snow based face detector. Neural Information Processing 12 (2000)
Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Patt. Anal. Mach. Intell. 20, 22–38 (1998)
Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Stat. 26(5), 1651–1686 (1998)
Simard, P.Y., Bottou, L., Haffner, P., LeCun, Y.: Boxlets: A fast convolution algorithm for signal processing and neural networks. In: Kearns, M., Solla, S., Cohn, D. (eds.) Advances in Neural Information Processing Systems, vol. 11, pp. 571–577 (1999)
Sung, K., Poggio, T.: Example-based learning for view based face detection. IEEE Patt. Anal. Mach. Intell. 20, 39–51 (1998)
Tsotsos, J., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F.: Modeling visual-attention via selective tuning. Artificial Intelligence Journal 78(1/2), 507–545 (1995)
Webb, A.: Statistical Pattern Recognition. Oxford University Press, New York (1999)
Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surverys (CSUR) 35(4), 399–458 (2003)
Li, S.Z., Lu, J.: Face recognition using the nearest feature line method. IEEE Trans. Neural Netw. 10, 439–443 (1999)
Turk, M.A., Pentland, A.P.: Eigenfaces for recognition. Cognitive Neurosci. 3(1), 71–86 (1991)
Nefian, A.V., et al.: Hidden markov models for face recognition. In: Proceedings International Conference on Acoustics, Speech and Signal Proceeding, pp. 2721–2724 (1998)
Huang, J., Heisele, B., Blanz, V.: Component based face recognition with 3D morphable models. In: Proceedings of International Conference on Audio and Video-based Person Authentication, vol. 5, pp. 27–34 (2003)
Belhumeur, V., Hespanda, J., Kiregeman, D.: Eigenfaces vs. fisherfaces: recognition using class specific liear projection. IEEE Trans. on PAMI 19, 711–720 (1997)
Osuna, E., Girosi, F.: Reducing the run-time complexity in support vector machines. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods —Support Vector Learning, pp. 271–284. MIT Press, Cambridge (1999)
Burges, C.J.C.: Simplified support vector decision rules. In: International Conference on Machine Learning, pp. 71–77 (1996)
Burges, C.J.C., Schölkopf, B.: Improving the accuracy and speed of support vector machines. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, p. 375. MIT Press, Cambridge (1997)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (2001)
Blanchard, G., Geman, D.: Hierarchical testing designs for pattern recognition. Technical Report 2003-07, Universit Paris-Sud (2003)
Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Suri, P.K., Ekta, W., Amit, V. (2011). Novel Face Detection Using Gabor Filter Bank with Variable Threshold. In: Mantri, A., Nandi, S., Kumar, G., Kumar, S. (eds) High Performance Architecture and Grid Computing. HPAGC 2011. Communications in Computer and Information Science, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22577-2_83
Download citation
DOI: https://doi.org/10.1007/978-3-642-22577-2_83
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22576-5
Online ISBN: 978-3-642-22577-2
eBook Packages: Computer ScienceComputer Science (R0)