Nothing Special   »   [go: up one dir, main page]

Skip to main content

Novel Face Detection Using Gabor Filter Bank with Variable Threshold

  • Conference paper
High Performance Architecture and Grid Computing (HPAGC 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 169))

  • 3143 Accesses

Abstract

Face detection is the method of locating human faces in a given image under all lighting conditions, scales and orientations. Face is a unique feature of every person and the same is applicable to pupil, iris and fingerprints which are also unique as well. With the improvement of technology, neural network and processors’ high capacity have resulted in induction of informatics in this area. Automatic face detection and recognition has been drawing the main attention in the recent years. We have proposed here an accurate face detection system that can detect faces under different contrast with hurdles like faces with spectacles, heavy beard and even closed eyes. We use Gabor filter bank with varying threshold for feature extraction and face detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amit, Y., Geman, D.: A computational model for visualselection. Neural Computation 11, 1691–1715 (1999)

    Article  Google Scholar 

  2. Crow, F.: Summed-area tables for texture mapping. Proceedings of SIGGRAPH 18(3), 207–212 (1984)

    Article  Google Scholar 

  3. Fleuret, F., Geman, D.: Coarse-to-fine face detection. Int. J. Computer Vision 41, 85–107 (2001)

    Article  MATH  Google Scholar 

  4. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(9), 891–906 (1991)

    Article  Google Scholar 

  5. Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research 20, 847–856 (1980)

    Article  Google Scholar 

  6. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two dimensional visual cortical filters. J. Optical Soc. Amer. 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  7. Gabor, D.: Theory of communication. J. IEE 93, 429–457 (1946)

    Google Scholar 

  8. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  9. Greenspan, H., Belongie, S., Gooodman, R., Perona, P., Rakshit, S., Anderson, C.: Over complete steerable pyramid filters and rotation invariance. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (1994)

    Google Scholar 

  10. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Patt. Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  11. John, G., Kohavi, R., Feger, P.: Irrelevant features and the subset selection problem. In: Machine Learning Conference Proceedings (1994)

    Google Scholar 

  12. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: An application to face detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (1997a)

    Google Scholar 

  13. Papageorgiou, C., Oren, M., Poggio, T.: A general framework for object detection. In: International Conference of Computer Vision (1998)

    Google Scholar 

  14. Quinlan, J.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  15. Roth, D., Yang, M., Ahuja, N.: A snow based face detector. Neural Information Processing 12 (2000)

    Google Scholar 

  16. Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Patt. Anal. Mach. Intell. 20, 22–38 (1998)

    Google Scholar 

  17. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Stat. 26(5), 1651–1686 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Simard, P.Y., Bottou, L., Haffner, P., LeCun, Y.: Boxlets: A fast convolution algorithm for signal processing and neural networks. In: Kearns, M., Solla, S., Cohn, D. (eds.) Advances in Neural Information Processing Systems, vol. 11, pp. 571–577 (1999)

    Google Scholar 

  19. Sung, K., Poggio, T.: Example-based learning for view based face detection. IEEE Patt. Anal. Mach. Intell. 20, 39–51 (1998)

    Article  Google Scholar 

  20. Tsotsos, J., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F.: Modeling visual-attention via selective tuning. Artificial Intelligence Journal 78(1/2), 507–545 (1995)

    Article  Google Scholar 

  21. Webb, A.: Statistical Pattern Recognition. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  22. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surverys (CSUR) 35(4), 399–458 (2003)

    Article  Google Scholar 

  23. Li, S.Z., Lu, J.: Face recognition using the nearest feature line method. IEEE Trans. Neural Netw. 10, 439–443 (1999)

    Article  Google Scholar 

  24. Turk, M.A., Pentland, A.P.: Eigenfaces for recognition. Cognitive Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  25. Nefian, A.V., et al.: Hidden markov models for face recognition. In: Proceedings International Conference on Acoustics, Speech and Signal Proceeding, pp. 2721–2724 (1998)

    Google Scholar 

  26. Huang, J., Heisele, B., Blanz, V.: Component based face recognition with 3D morphable models. In: Proceedings of International Conference on Audio and Video-based Person Authentication, vol. 5, pp. 27–34 (2003)

    Google Scholar 

  27. Belhumeur, V., Hespanda, J., Kiregeman, D.: Eigenfaces vs. fisherfaces: recognition using class specific liear projection. IEEE Trans. on PAMI 19, 711–720 (1997)

    Article  Google Scholar 

  28. Osuna, E., Girosi, F.: Reducing the run-time complexity in support vector machines. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods —Support Vector Learning, pp. 271–284. MIT Press, Cambridge (1999)

    Google Scholar 

  29. Burges, C.J.C.: Simplified support vector decision rules. In: International Conference on Machine Learning, pp. 71–77 (1996)

    Google Scholar 

  30. Burges, C.J.C., Schölkopf, B.: Improving the accuracy and speed of support vector machines. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, p. 375. MIT Press, Cambridge (1997)

    Google Scholar 

  31. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (2001)

    Google Scholar 

  32. Blanchard, G., Geman, D.: Hierarchical testing designs for pattern recognition. Technical Report 2003-07, Universit Paris-Sud (2003)

    Google Scholar 

  33. Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suri, P.K., Ekta, W., Amit, V. (2011). Novel Face Detection Using Gabor Filter Bank with Variable Threshold. In: Mantri, A., Nandi, S., Kumar, G., Kumar, S. (eds) High Performance Architecture and Grid Computing. HPAGC 2011. Communications in Computer and Information Science, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22577-2_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22577-2_83

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22576-5

  • Online ISBN: 978-3-642-22577-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics