Abstract
Fraud is one of the largest growing problems experienced by many organizations as well as affecting the general public. Over the past decade the use of global communications and the Internet for conducting business has increased in popularity, which has been facing the fraud threat. This paper proposes an immune inspired adaptive online fraud detection system to counter this threat. This proposed system has two layers: the innate layer that implements the idea of Dendritic Cell Analogy (DCA), and the adaptive layer that implements the Dynamic Clonal Selection Algorithm (DCSA) and the Receptor Density Algorithm (RDA). The experimental results demonstrate that our proposed hybrid approach combining innate and adaptive layers of immune system achieves the highest detection rate and the lowest false alarm rate compared with the DCA, DCSA, and RDA algorithms for Video-on-Demand system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Satti, M.M., Gamer, B.J., Nagrial, M.H.: Information security standard for E businesses. In: Proc. 8th Intl. Conf. on Commun. System, vol. 2, pp. 641–645 (2008)
Mashima, D., Ahamad, M.: Using Identity Credential Usage Logs to Detect Anomalous Service Accesses. DIM, Chicago (2009)
Williams, P.D., Anchor, K.P., Bebo, J.L., Gunsch, G.H., Lamont, G.D.: CDIS: Towards a Computer Immune System for Detecting Network Intrusions. In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 117–133. Springer, Heidelberg (2001)
Greensmith, J., Twycross, J., Aickelin, U.: Dendritic cells for anomaly detection. In: Harper, R., Rauterberg, M., Combetto, M. (eds.) ICEC 2006. LNCS, vol. 4161, pp. 664–671. Springer, Heidelberg (2006)
Hofmeyr, S.A., Forrest, S.: Architecture for an artificial immune system. Evolutionary Computation 7(1), 45–68 (2000)
Cortés, P., García, J.M., Onieva, L., Muñuzuri, J., Guadix, J.: Viral System to Solve Optimization Problems: An Immune-Inspired Computational Intelligence Approach. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 83–94. Springer, Heidelberg (2008)
Castro, P.A.D., Zuben, F.J.Von.: Mobais: a Bayesian Artificial Immune System for Multi-Objective Optimization. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 49–59. Springer, Heidelberg (2008)
Oates, R., Greensmith, J., Aickelin, U., Garibaldi, J., Kendall, G.: The application of a dendritic cell algorithm to a robotic classifier. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 204–215. Springer, Heidelberg (2007)
Qiang, C., Xiangpin, L., Chuang, X.: A Model for Detection and Diagnosis of Fault Based on Artificial Immune Theory. Journal of Southern Institute of Memallurgy 126(3) (2005)
Tuo, J., Ren, S., Liu, W., Li, X., Li, B., Lei, L.: Artificial Immune System for Fraud Detection. In: proceeding of IEEE International Conference on Systems, Man and Cybernetics, pp. 1407–1411 (2004)
Huang, R., Tawfik, H., NagaRentian, A.: Artificial Dendritic Cells Algorithm for Online Break-in Fraud Detection. In: Proceeding of International Conference on Developments in eSystems Engineering, Abu Dhabi, UAE, pp. 181–189 (2009)
Huang, R., Tawfik, H., Nagar, A.: Electronic Fraud Detection for Video-on-Demand System Using Hybrid Immunology-Inspired Algorithms. In: Proceeding of The 9th International Conference on Artificial Immune Systems, Edinburgh, UK, pp. 290–303 (2010)
Gadi, M.F.A., Wang, X., do Lago, A.P.: Credit Card Fraud Detection with Artificial Immune System. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 119–131. Springer, Heidelberg (2008)
Brabazon, A., Cahill, J., Keenan, P., Walsh, D.: Identifying online credit card fraud using artificial immune systems. In: Yang, H.S., Malaka, R., Hoshino, J., Han, J.H. (eds.) ICEC 2010. LNCS, vol. 6243. Springer, Heidelberg (2010)
Timmis, J., Tyrrell, A., Mokhtar, M., Ismail, A.R., owen, N., Bi, R.: An Artificial Immune System for Robot Organisms. Adaptive Control Mechanisms, 279–302 (2010)
De Castro, L.N., Von Zuben, F.J.: The clonal selection algorithm with engineering applications. In: Proceedings of GECCO 2000. Workshop on Artificial Immune Systems and Their Applications. 36–37 (2000)
Yu, S., Dasgupta, D.: Conserved Self Pattern Recognition Algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 279–290. Springer, Heidelberg (2008)
Owens, N., Greensted, A., Timmis, J., Tyrrell, A.: T cell receptor signalling inspired kernel density estimation and anomaly detection. In: Andrews, P.S., Timmis, J., Owens, N.D.L., Aickelin, U., Hart, E., Hone, A., Tyrrell, A.M. (eds.) ICARIS 2009. LNCS, vol. 5666, pp. 122–135. Springer, Heidelberg (2009)
Secker.,Freitas, A., Timmis, J.: AISEC: An Artificial Immune System for Email Classification. In: Proceedings of the Congress on Evolutionary Computation, vol. 2003, pp. 131–139. IEEE, Canberra (2005)
Lundin, E., Kvarnström, H., Jonsson, E.: A synthetic fraud data generation methodology. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 265–277. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Huang, R., Tawfik, H., Nagar, A. (2011). Towards an Artificial Immune System for Online Fraud Detection. In: Liò, P., Nicosia, G., Stibor, T. (eds) Artificial Immune Systems. ICARIS 2011. Lecture Notes in Computer Science, vol 6825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22371-6_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-22371-6_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22370-9
Online ISBN: 978-3-642-22371-6
eBook Packages: Computer ScienceComputer Science (R0)