Nothing Special   »   [go: up one dir, main page]

Skip to main content

Constructing Orthogonal de Bruijn Sequences

  • Conference paper
Algorithms and Data Structures (WADS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6844))

Included in the following conference series:

Abstract

A (σ,k)-de Bruijn sequence is a minimum length string on an alphabet set of size σ which contains all σ k k-mers exactly once. Motivated by an application in synthetic biology, we say a given collection of de Bruijn sequences are orthogonal if no two of them contain the same (k + 1)-mer; that is, the length of their longest common substring is k.

In this paper, we show how to construct large collections of orthogonal de Bruijn sequences. In particular, we prove that there are at least \(\lfloor \sigma/2 \rfloor\) mutually-orthogonal order-k de Bruijn sequences on alphabets of size σ for all k. Based on this approach, we present a heuristic which proves capable of efficiently constructing optimal collections of mutually-orthogonal sequences for small values of σ and k, which supports our conjecture that σ − 1 mutually-orthogonal de Bruijn sequences exist for all σ and k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bermond, J.-C.: Hamiltonian decompositions of graphs, directed graphs and hypergraphs. Ann. Discrete Math. 3, 21–28 (1978); Présentéau Cambridge Combinatorial Conf., Advances in Graph Theory , Trinity College, Cambridge, England (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bermond, J.-C., Darrot, E., Delmas, O., Perennes, S.: Hamilton circuits in the directed wrapped butterfly network. Discrete Applied Mathematics 84(1), 21–42 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bond, J., Iványi, A.: Modelling of interconnection networks using de bruijn graphs. In: Iványi, A. (ed.) Third Conference of Program Designer, Budapest (1987)

    Google Scholar 

  4. Bugl, H., Danner, J.P., Molinari, R.J., Mulligan, J.T., Park, H.-O., Reichert, B., Roth, D.A., Wagner, R., Budowle, B., Scripp, R.M., Smith, J.A.L., Steele, S.J., Church, G., Endy, D.: DNA synthesis and biological security. Nature Biotechnology 25, 627–629 (2007)

    Article  Google Scholar 

  5. Coleman, J.R., Papamichial, D., Futcher, B., Skiena, S., Mueller, S., Wimmer, E.: Virus attenuation by genome-scale changes in codon-pair bias. Science 320, 1784–1787 (2008)

    Article  Google Scholar 

  6. Czar, M.J., Anderson, J.C., Bader, J.S., Peccoud, J.: Gene synthesis demystified. Trends in Biotechnology 27(2), 63–72 (2009)

    Article  Google Scholar 

  7. de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)

    MATH  Google Scholar 

  8. Gibson, D., et al.: Creation of a bacterial cell controlled by a chemically synthesized genome. Science (2010), doi:10.1125./science.1190719

    Google Scholar 

  9. Fleischner, H., Jackson, B.: Compatible euler tours in eulerian digraphs. In: Cycles and Rays, Proceeding Colloquium Montreal, 1987. ATO ASI Ser. C, pp. 95–100. Kluwer Academic Publishers, Dordrecht (1990)

    Google Scholar 

  10. Golomb, S.W.: Shift Register Sequences. Holden-Day (1967)

    Google Scholar 

  11. Good, I.J.: Normal recurring decimals. J. London Math. Soc. 21, 167–172 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kása, Z.: On arc-disjoint hamiltonian cycles in de Bruijn graphs. CoRR abs/1003.1520 (2010)

    Google Scholar 

  13. Kautz, W.H.: Bounds on directed (d,k) graphs. In: Theory of Cellular Logic Networks and Machines, AFCKL-68-0668 Final Rep., vol. 24, pp. 20–28 (1968)

    Google Scholar 

  14. Knuth, D.E.: Oriented subtrees of an arc digraph. Journal of Combinatorial Theory 3, 309–314 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Montes, P., Memelli, H., Ward, C., Kim, J., Mitchell, J., Skiena, S.: Optimizing restriction site placement for synthetic genomes. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 323–337. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Mueller, S., Coleman, R., Papamichail, D., Ward, C., Nimnual, A., Futcher, B., Skiena, S., Wimmer, E.: Live attenuated influenza vaccines by computer-aided rational design. Nature Biotechnology 28 (2010)

    Google Scholar 

  17. Ronse, C.: Feedback Shift Registers. Springer, Berlin (1984)

    MATH  Google Scholar 

  18. Rosenfeld, V.R.: Enumerating Kautz sequences. Kragujevac Journal of Mathematics 24, 19–41 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Rowley, R., Bose, B.: Edge-disjoint Hamiltonian cycles in de Bruijn networks. In: Distributed Memory Computing Conference, pp. 707–709 (1991)

    Google Scholar 

  20. Rowley, R., Bose, B.: On the number of arc-disjoint Hamiltonian circuits in the de Bruijn graph. Parallel Processing Letters 3(4), 375–380 (1993)

    Article  MathSciNet  Google Scholar 

  21. Tutte, W.T.: The dissection of equilateral triangles into equilateral triangles. Mathematical Proceedings of the Cambridge Philosophical Society 44, 463–482 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  22. van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Circuits and trees in oriented linear graphs. Simon Stevin: Wisen Natuurkundig Tijdschrift 28, 203–217 (1951)

    MathSciNet  MATH  Google Scholar 

  23. West, D.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, YL., Ward, C., Jain, B., Skiena, S. (2011). Constructing Orthogonal de Bruijn Sequences. In: Dehne, F., Iacono, J., Sack, JR. (eds) Algorithms and Data Structures. WADS 2011. Lecture Notes in Computer Science, vol 6844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22300-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22300-6_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22299-3

  • Online ISBN: 978-3-642-22300-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics