Nothing Special   »   [go: up one dir, main page]

Skip to main content

Well-Nestedness Properly Subsumes Strict Derivational Minimalism

  • Conference paper
Logical Aspects of Computational Linguistics (LACL 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6736))

Abstract

Minimalist grammars (MGs) constitute a mildly context-sensitive formalism when being equipped with a particular locality condition (LC), the shortest move condition. In this format MGs define the same class of derivable string languages as multiple context-free grammars (MCFGs). Adding another LC to MGs, the specifier island condition (SPIC), results in a proper subclass of derivable languages. It is rather straightforward to see this class is embedded within the class of languages derivable by some well-nested MCFG (MCFG wn ). In this paper we show that the embedding is even proper. We partially do so adapting the methods used in [13] to characterize the separation of MCFG wn -languages from MCFG-languages by means of a “simple copying” theorem. The separation of strict derivational minimalism from well-nested MCFGs is then characterized by means of a “simple reverse copying” theorem. Since for MGs, well-nestedness seems to be a rather ad hoc restriction, whereas for MCFGs, this holds regarding the SPIC, our result may suggest we are concerned here with a structural difference between MGs and MCFGs which cannot immediately be overcome in a non-stipulated manner.

This work has essentially been carried out within the joint research project “Open Problems on Multiple Context-Free Grammars” funded by the National Institute of Informatics, Tokyo, Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  2. Chomsky, N.: Derivation by phase. In: Kenstowicz, M. (ed.) Ken Hale. A Life in Language, pp. 1–52. MIT Press, Cambridge (2001)

    Google Scholar 

  3. Chomsky, N.: On phases. In: Freidin, R., Otero, C., Zubizaretta, M.L. (eds.) Foundational Issues in Linguistic Theory, pp. 133–166. MIT Press, Cambridge (2008)

    Google Scholar 

  4. Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L systems, and two-way machines. Journal of Computer and System Sciences 20, 150–202 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gärtner, H.-M., Michaelis, J.: A note on the complexity of constraint interaction: Locality conditions and minimalist grammars. In: Blache, P., Stabler, E., Busquets, J., Moot, R. (eds.) LACL 2005. LNCS (LNAI), vol. 3492, pp. 114–130. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Gärtner, H.M., Michaelis, J.: Some remarks on locality conditions and minimalist grammars. In: Sauerland, U., Gärtner, H.M. (eds.) Interfaces + Recursion = Language?, pp. 161–195. Mouton de Gruyter, Berlin (2007)

    Google Scholar 

  7. Gazdar, G.: Unbounded dependencies and coordinate structure. Linguistic Inquiry 12, 155–184 (1981)

    Google Scholar 

  8. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Groote, P., Morrill, G., Retoré, C. (eds.): LACL 2001. LNCS (LNAI), vol. 2099. Springer, Heidelberg (2001)

    Google Scholar 

  10. Harkema, H.: A characterization of minimalist languages. In: de Groote, P. et al (eds.) [9], pp. 193–211

    Google Scholar 

  11. Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to provide reasonable structural descriptions? In: Dowty, D.R., Karttunen, L., Zwicky, A.M. (eds.) Natural Language Parsing, pp. 206–250. Cambridge University Press, New York (1985)

    Chapter  Google Scholar 

  12. Kanazawa, M.: The convergence of well-nested mildly context-sensitive grammar formalisms (2009), invited talk held at FG-2009, Bordeaux

    Google Scholar 

  13. Kanazawa, M., Salvati, S.: The copying power of well-nested multiple context-free grammars. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 344–355. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Kobele, G.M.: Generating Copies. An investigation into structural identity in language and grammar. Ph.D. thesis, University of California, Los Angeles (2006)

    Google Scholar 

  15. Kobele, G.M., Michaelis, J.: Two type-0 variants of minimalist grammars. In: Rogers, J. (ed.) [25], pp. 81–91

    Google Scholar 

  16. Koopman, H., Szabolcsi, A.: Verbal Complexes. MIT Press, Cambridge (2000)

    Google Scholar 

  17. Kracht, M.: The Mathematics of Language. Mouton de Gruyter, Berlin (2003)

    Book  MATH  Google Scholar 

  18. Michaelis, J.: Derivational minimalism is mildly context-sensitive. In: Moortgat, M. (ed.) LACL 1998. LNCS (LNAI), vol. 2014, pp. 179–198. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Michaelis, J.: On Formal Properties of Minimalist Grammars. Linguistics in Potsdam 13, Universitätsbibliothek, Publikationsstelle, Potsdam, Ph.D. thesis (2001)

    Google Scholar 

  20. Michaelis, J.: Transforming linear context-free rewriting systems into minimalist grammars. In: de Groote, et al (eds.) [9], pp. 228–244

    Google Scholar 

  21. Michaelis, J.: Observations on strict derivational minimalism. Electronic Notes in Theoretical Computer Science 53, 192–209 (2004)

    Article  MATH  Google Scholar 

  22. Michaelis, J.: An additional observation on strict derivational minimalism. In: Rogers, J. (ed.) [25], pp. 101–111

    Google Scholar 

  23. Mönnich, U.: Some remarks on mildly context-sensitive copying. In: Hanneforth, T., Fanselow, G. (eds.) Language and Logos, pp. 367–389. Akad. Verlag, Berlin (2010)

    Google Scholar 

  24. Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting systems. Theoretical Computer Science 223, 87–120 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rogers, J.: Proceedings of FG-MoL 2005. CSLI Publications, Stanford (2009)

    Google Scholar 

  26. Salvati, S.: Minimalist grammars in the light of logic. Research Report, INRIA Bordeaux (2011), http://hal.inria.fr/inria-00563807/en/

  27. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88, 191–229 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  29. Stabler, E.P.: Remnant movement and complexity. In: Bouma, G., Kruijff, G.J.M., Hinrichs, E., Oehrle, R.T. (eds.) Constraints and Resources in Natural Language Syntax and Semantics, pp. 299–326. CSLI Publications, Stanford (1999)

    Google Scholar 

  30. Stabler, E.P.: Recognizing head movement. In: de Groote, P., et al [9], pp. 245–260

    Google Scholar 

  31. Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C. (ed.) Oxford Handbook of Linguistic Minimalism, pp. 616–641. Oxford University Press, New York (2011)

    Google Scholar 

  32. Stabler, E.P., Keenan, E.L.: Structural similarity within and among languages. Theoretical Computer Science 293, 345–363 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions produced by various grammatical formalisms. In: 25th Annual Meeting of the Association for Computational Linguistics, Stanford, CA, pp. 104–111. ACL (1987)

    Google Scholar 

  34. Villemonte de la Clergerie, É.: Parsing mcs languages with thread automata. In: Proceedings of the Sixth International Workshop on Tree Adjoining Grammars and Related Formalisms, Venezia, pp. 101–108 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanazawa, M., Michaelis, J., Salvati, S., Yoshinaka, R. (2011). Well-Nestedness Properly Subsumes Strict Derivational Minimalism. In: Pogodalla, S., Prost, JP. (eds) Logical Aspects of Computational Linguistics. LACL 2011. Lecture Notes in Computer Science(), vol 6736. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22221-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22221-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22220-7

  • Online ISBN: 978-3-642-22221-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics