Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Problem of Prediction

  • Conference paper
Knowledge Processing and Data Analysis (KPP 2007, KONT 2007)

Abstract

We consider predictions provided by Inductive-Statistical (I-S) inference. It was noted by Hempel that I-S inference is statistically ambiguous. To avoid this problem Hempel introduced the Requirement of Maximal Specificity (RMS). We define the formal notion of RMS in terms of probabilistic logic, and maximally specific rules (MS-rules), i.e. rules satisfying RMS. Then we prove that any set of MS-rules draws no contradictions in I-S inference, therefore predictions based on MS-rules avoid statistical ambiguity. I-S inference may be used for predictions in knowledge bases or expert systems. In the last we need to calculate the probabilistic estimations for predictions. Though one may use existing probabilistic logics or “quantitative deductions” to obtain these estimations, instead we define a semantic probabilistic inference and prove that it approximates logical inference in some sense. We also developed a program system ‘Discovery’ which realizes this inference and was successfully applied to the solution of many practical tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hempel, C.G.: Aspects of Scientific Explanation. In: Hempel, C.G. (ed.) Aspects of Scientific Explanation and other Essays in the Philosophy of Science. The Free Press, New York (1965)

    Google Scholar 

  2. Hempel, C.G.: Maximal Specificity and Lawlikeness in Probabilistic Explanation. Philosophy of Science 35, 116–133 (1968)

    Article  Google Scholar 

  3. Salmon, W.C.: Four Decades of Scientific Explanation. University of Minnesota Press, Minneapolis (1990)

    Google Scholar 

  4. Tan, Y.H.: Is default logic a reinvention of inductive-statistical reasoning? Synthese 110, 357–379 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.:Foundations of measurement, vol. 1, 2, 3, p. 577 (1971) p. 493 (1986) p. 356 (1990); Acad. press, New York

    Google Scholar 

  6. Williamson, J.: Probability logic. In: Gabbay, D., Johnson, R., Ohlbach, H.J., Woods, J. (eds.) Handbook of the Logic of Inference and Argument: The Turn Toward the Practical. Studies in Logic and Practical Reasoning, vol. 1, pp. 397–424. Elsevier, Amsterdam

    Google Scholar 

  7. Vityaev, E.E., Kovalerchuk, B.Y.: Empirical Theories Discovery based on the Measurement Theory. Mind and Machine 14(4), 551–573 (2004)

    Article  Google Scholar 

  8. Vityaev, E.E.: The logic of prediction. In: Proceedings of the 9th Asian Logic Conference Mathematical Logic in Asia, Novosibirsk, Russia, August 16–19, 2005, pp. 263–276. World Scientific, Singapore (2006)

    Google Scholar 

  9. Halpern, J.Y.: An analysis of first-order logic of probability. In: Artificial Intelligence, vol. 46, pp. 311–350 (1990)

    Google Scholar 

  10. Nilsson, N.J.: Probability logic. Artif. Intell. 28(1), 71–87 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ng, R.T., Subrahmanian, V.S.: Probabilistic reasoning in Logic Programming. In: Proc. 5th Symposium on Methodologies for Intelligent Systems, pp. 9–16. North-Holland, Knoxville (1990)

    Google Scholar 

  12. Ng, R.T., Subrahmanian, V.S.: Probabilistic Logic Programming. Information and Computation 101(2), 150–201 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kovalerchuk, B.Y., Vityaev, E.E.: Data Mining in finance: Advances in Relational and Hybrid Methods, p. 308. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  14. Kovalerchuk, B.Y., Vityaev, E.E., Ruiz, J.F.: Consistent and Complete Data and ”Expert” Mining in Medicine. In: Medical Data Mining and Knowledge Discovery, pp. 238–280. Springer, Heidelberg (2001)

    Google Scholar 

  15. Vityaev, E.E., Kovalerchuk, B.Y.: Data Mining For Financial Applications. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers, pp. 1203–1224. Springer, Heidelberg (2005)

    Google Scholar 

  16. Vityaev, E.E.: Semantic approach to knowledge base creating. Semantic probabilistic inference of the best for prediction PROLOG-programs by a probability model of data Logic and Semantic Programming, Novosibirsk. Computational Systems 146, 19–49 (1992) (in Russian)

    MathSciNet  Google Scholar 

  17. Vityaev, E.E.: Knowledge inductive inference. Computational cognition. Cognitive process modelling, p. 293. Novosibirsk State University Press, Novosibirsk (2006) (in Russian)

    Google Scholar 

  18. Smerdov, S.O., Vityaev, E.E.: Probability, logic & learning synthesis: formalizing prediction concept. Siberian Electronic Mathemetical Reports 9, 340–365 (2009)

    MATH  Google Scholar 

  19. Scientific Discovery, http://www.math.nsc.ru/AP/ScientificDiscovery

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vityaev, E., Smerdov, S. (2011). On the Problem of Prediction. In: Wolff, K.E., Palchunov, D.E., Zagoruiko, N.G., Andelfinger, U. (eds) Knowledge Processing and Data Analysis. KPP KONT 2007 2007. Lecture Notes in Computer Science(), vol 6581. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22140-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22140-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22139-2

  • Online ISBN: 978-3-642-22140-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics