Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hybrid and First-Order Complete Extensions of CaRet

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6793))

Abstract

We investigate the hybrid extension of CaRet, denoted HyCaRet, obtained by adding the standard existential binder operator ∃. We show that the one variable fragment 1-HyCaRet of HyCaRet is expressively complete for the first-order logic FO μ which extends FO over words with a binary matching predicate. While all the known FO μ -complete and elementary extensions of CaRet can be linearly translated in 1-HyCaRet, 1-HyCaRet can be exponentially more succinct than them. Moreover, the complexity of its satisfiability and pushdown model-checking problems are 2Exptime-complete, which is the same complexity as that of two known FO μ -complete extensions of CaRet suitable for compositional and modular reasoning, namely CaRet + ‘within’ and CaRet + ‘forgettable past’. Finally, we show that for each h ≥ 1, satisfiability and pushdown model-checking of the fragment HyCaRet h of HyCaRet consisting of formulas with nesting depth of ∃ at most h is exactly (h+1)-Exptime-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Arenas, M., Barcelo, P., Etessami, K., Immerman, N., Libkin, L.: First-order and temporal logics for nested words. Logical Methods in Computer Science 4(4) (2008)

    Google Scholar 

  2. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th STOC, pp. 202–211. ACM, New York (2004)

    Google Scholar 

  4. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Application to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  6. Bozzelli, L., Lanotte, R.: Complexity and succinctness issues for linear-time hybrid logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 48–61. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Bozzelli, L., Lanotte, R.: Hybrid and first-order complete extensions of CARET. Technical report - (2011), http://dscpi.uninsubria.it/staff/Lanotte

  8. Bozzelli, L.: Alternating automata and a temporal fixpoint calculus for visibly pushdown languages. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 476–491. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Bozzelli, L.: Caret with forgettable past. In: Proc. 5th Workshop on Methods for Modalities. ENTCS. Elsevier, Amsterdam (2008)

    Google Scholar 

  10. Franceschet, M., de Rijke, M.: Model checking hybrid logics (with an application to semistructured data). J. Applied Logic 4(3), 279–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Franceschet, M., de Rijke, M., Schlingloff, B.H.: Hybrid logics on linear structures: Expressivity and complexity. In: Proc. 10th TIME, pp. 166–173. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  12. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past. In: Proc. 17th LICS, pp. 383–392. IEEE Comp. Soc. Press, Los Alamitos (2002)

    Google Scholar 

  13. Laroussinie, F., Schnoebelen, P.: A hierarchy of temporal logics with past. Theoretical Computer Science 148(2), 303–324 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer Science 32, 321–330 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schwentick, T., Weber, V.: Bounded-variable fragments of hybrid logics. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 561–572. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Wolper, P.: Constructing automata from temporal logic formulas: A tutorial. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, pp. 261–277. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bozzelli, L., Lanotte, R. (2011). Hybrid and First-Order Complete Extensions of CaRet . In: Brünnler, K., Metcalfe, G. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2011. Lecture Notes in Computer Science(), vol 6793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22119-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22119-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22118-7

  • Online ISBN: 978-3-642-22119-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics