Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Event-Based Disease Progression Model and Its Application to Familial Alzheimer’s Disease

  • Conference paper
Information Processing in Medical Imaging (IPMI 2011)

Abstract

This study introduces a novel event-based model for disease progression. The model describes disease progression as a series of events. An event can consist of a significant change in symptoms or in tissue. We construct a forward model that relates heterogeneous measurements from a whole cohort of patients and controls to the event sequence and fit the model with a Bayesian estimation framework. The model does not rely on a priori classification of patients and therefore has the potential to describe disease progression in much greater detail than previous approaches. We demonstrate our model on serial T1 MRI data from a familial Alzheimer’s disease cohort. We show progression of neuronal atrophy on a much finer level than previous studies, while confirming progression patterns from pathological studies, and integrate clinical events into the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Braak, H., Braak, E.: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica 82(4), 239–259 (1991)

    Article  Google Scholar 

  2. Carbone, P., Kaplan, H., Musshoff, K., Smithers, D., Tubiana, M.: Report of the committee on Hodgkin’s disease staging classification. Cancer Research 31(11), 1860 (1971)

    Google Scholar 

  3. Dempster, A., Laird, N., Rubin, D., et al.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  4. Dickerson, B., Bakkour, A., Salat, D., Feczko, E., Pacheco, J., Greve, D., Grodstein, F., Wright, C., Blacker, D., Rosas, H., et al.: The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cerebral Cortex 19(3), 497 (2009)

    Article  Google Scholar 

  5. Fischl, B., Salat, D., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., et al.: Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. Neuron 33(3), 341–355 (2002)

    Article  Google Scholar 

  6. Fischl, B., Van Der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D., Busa, E., Seidman, L., Goldstein, J., Kennedy, D., et al.: Automatically parcellating the human cerebral cortex. Cerebral Cortex 14(1), 11 (2004)

    Article  Google Scholar 

  7. Folstein, M.F., Folstein, S.E., McHugh, P.R.: Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12(3), 189 (1975)

    Article  Google Scholar 

  8. Freeborough, P., Fox, N.: Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. Journal of Computer Assisted Tomography 22(5), 838 (1998)

    Article  Google Scholar 

  9. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov chain Monte Carlo in practice. Chapman & Hall/CRC (1996)

    Google Scholar 

  10. Mannila, H., Meek, C.: Global partial orders from sequential data. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p. 168. ACM, New York (2000)

    Google Scholar 

  11. McLachlan, G., Peel, D.: Finite mixture models. Wiley Interscience, Hoboken (2000)

    Book  MATH  Google Scholar 

  12. Modat, M., Ridgway, G., Taylor, Z., Lehmann, M., Barnes, J., Hawkes, D., Fox, N., Ourselin, S.: Fast free-form deformation using graphics processing units. Computer methods and programs in biomedicine 98(3), 278–284 (2010)

    Article  Google Scholar 

  13. Mueller, S., Weiner, M., Thal, L., Petersen, R., Jack, C., Jagust, W., Trojanowski, J., Toga, A., Beckett, L.: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s and Dementia: The Journal of the Alzheimer’s Association 1(1), 55–66 (2005)

    Article  Google Scholar 

  14. Puolamaki, K., Fortelius, M., Mannila, H.: Seriation in paleontological data using Markov chain Monte Carlo methods. PLoS Computational Biology 2(2), e6 (2006)

    Article  Google Scholar 

  15. Ridha, B.H., Barnes, J., Bartlett, J.W., Godbolt, A., Pepple, T., Rossor, M.N., Fox, N.C.: Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. The Lancet Neurology 5(10), 828–834 (2006)

    Article  Google Scholar 

  16. Scahill, R.I., Schott, J.M., Stevens, J.M., Rossor, M.N., Fox, N.C.: Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proceedings of the National Academy of Sciences of the United States of America 99(7), 4703 (2002)

    Article  Google Scholar 

  17. Tabrizi, S., Langbehn, D., Leavitt, B., Roos, R., Durr, A., Craufurd, D., Kennard, C., Hicks, S., Fox, N., Scahill, R., et al.: Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. The Lancet Neurology 8(9), 791–801 (2009)

    Article  Google Scholar 

  18. Thompson, P., Mega, M., Woods, R., Zoumalan, C., Lindshield, C., Blanton, R., Moussai, J., Holmes, C., Cummings, J., Toga, A.: Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cerebral Cortex 11(1), 1 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fonteijn, H.M. et al. (2011). An Event-Based Disease Progression Model and Its Application to Familial Alzheimer’s Disease. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22092-0_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22091-3

  • Online ISBN: 978-3-642-22092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics