Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Convex Max-Flow Segmentation of LV Using Subject-Specific Distributions on Cardiac MRI

  • Conference paper
Information Processing in Medical Imaging (IPMI 2011)

Abstract

This work studies the convex relaxation approach to the left ventricle (LV) segmentation which gives rise to a challenging multi-region seperation with the geometrical constraint. For each region, we consider the global Bhattacharyya metric prior to evaluate a gray-scale and a radial distance distribution matching. In this regard, the studied problem amounts to finding three regions that most closely match their respective input distribution model. It was previously addressed by curve evolution, which leads to sub-optimal and computationally intensive algorithms, or by graph cuts, which result in heavy metrication errors (grid bias). The proposed convex relaxation approach solves the LV segmentation through a sequence of convex sub-problems. Each sub-problem leads to a novel bound of the Bhattacharyya measure and yields the convex formulation which paves the way to build up the efficient and reliable solver. In this respect, we propose a novel flow configuration that accounts for labeling-function variations, in comparison to the existing flow-maximization configurations. We show it leads to a new convex max-flow formulation which is dual to the obtained convex relaxed sub-problem and does give the exact and global optimums to the original non-convex sub-problem. In addition, we present such flow perspective gives a new and simple way to encode the geometrical constraint of optimal regions. A comprehensive experimental evaluation on sufficient patient subjects demonstrates that our approach yields improvements in optimality and accuracy over related recent methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben Ayed, I., Chen, H.M., Punithakumar, K., Ross, I., Li, S.: Graph cut segmentation with a global constraint: Recovering region distribution via a bound of the Bhattacharyya measure. In: CVPR 2010 (2010)

    Google Scholar 

  2. Ben Ayed, I., Li, S., Ross, I.: Embedding overlap priors in variational left ventricle tracking. IEEE Trans. Med. Imaging 28(12), 1902–1913 (2009)

    Article  Google Scholar 

  3. Ben Ayed, I., Li, S., Ross, I., Islam, A.: Myocardium tracking via matching distributions. Int. J. of Comput. Assist. Radiol. and Surg. 4(1), 37–44 (2009)

    Article  Google Scholar 

  4. Ben Ayed, I., Punithakumar, K., Li, S., Islam, A., Chong, J.: Left ventricle segmentation via graph cut distribution matching. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 901–909. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (1999)

    Google Scholar 

  6. Boykov, Y., Funka Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vision 70(2), 109–131 (2006)

    Article  Google Scholar 

  7. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1124–1137 (2004), http://dx.doi.org/10.1109/TPAMI.2004.60

    Article  MATH  Google Scholar 

  8. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  9. Chan, T., Shen, J.H.: Image Processing And Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  10. Giusti, E.: Minimal surfaces and functions of bounded variation. Australian National University, Canberra (1977)

    MATH  Google Scholar 

  11. Jolly, M.-P.: Automatic recovery of the left ventricular blood pool in cardiac cine MR images. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 110–118. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Kaus, M.R., von Berg, J., Weese, J., Niessen, W., Pekar, V.: Automated segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 8(3), 245–254 (2004), http://www.sciencedirect.com/science/article/B6W6Y-4D09D3J-1/2/d7268f23efbbbfa83da4665d311dee58

    Article  Google Scholar 

  13. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. Tech. report, HCI, IWR, Uni. Heidelberg (2008)

    Google Scholar 

  14. Liu, H., Chen, Y., Ho, H.P., Shi, P.: Geodesic active contours with adaptive neighboring influence. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 741–748. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Nikolova, M., Esedoglu, S., Tony, F.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006), http://link.aip.org/link/?SMM/66/1632/1

    Article  MathSciNet  MATH  Google Scholar 

  16. Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: CVPR 2009 (2009)

    Google Scholar 

  17. Rockafellar, R.T.: The multiplier method of Hestenes and Powell applied to convex programming. J. Optimiz. Theory App. 12, 555–562 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching - incorporating a global constraint into MRFs. In: CVPR 2006 (2006)

    Google Scholar 

  20. Yuan, J., Bae, E., Tai, X.C., Boycov, Y.: A study on continuous max-flow and min-cut approaches. Part I: Binary labeling. Tech report CAM-10-61, UCLA (2010)

    Google Scholar 

  21. Yuan, J., Bae, E., Tai, X.C.: A study on continuous max-flow and min-cut approaches. In: CVPR 2010 (2010)

    Google Scholar 

  22. Zhu, Y., Papademetris, X., Sinusas, A.J., Duncan, J.S.: Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model. IEEE Trans. Med. Imaging 29(4), 669–687 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nambakhsh, M.S. et al. (2011). A Convex Max-Flow Segmentation of LV Using Subject-Specific Distributions on Cardiac MRI. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22092-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22091-3

  • Online ISBN: 978-3-642-22092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics