Abstract
We study the problem of exploring an unknown undirected connected graph. Beginning in some start vertex, a searcher must visit each node of the graph by traversing edges. Upon visiting a vertex for the first time, the searcher learns all incident edges and their respective traversal costs. The goal is to find a tour of minimum total cost. Kalyanasundaram and Pruhs [23] proposed a sophisticated generalization of a Depth First Search that is 16-competitive on planar graphs. While the algorithm is feasible on arbitrary graphs, the question whether it has constant competitive ratio in general has remained open. Our main result is an involved lower bound construction that answers this question negatively. On the positive side, we prove that the algorithm has constant competitive ratio on any class of graphs with bounded genus. Furthermore, we provide a constant competitive algorithm for general graphs with a bounded number of distinct weights.
Supported by the National Research Fund, Luxembourg, and cofunded under the Marie Curie Actions of the European Commission (FP7-COFUND).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)
Asahiro, Y., Miyano, E., Miyazaki, S., Yoshimuta, T.: Weighted nearest neighbor algorithms for the graph exploration problem on cycles. Inf. Process. Lett. 110(3), 93–98 (2010)
Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line travelling salesman. Algorithmica 29(4), 560–581 (2001)
Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152(2), 155–172 (1999)
Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Information and Computation 106(2), 234–252 (1993)
Bender, M.A., Slonim, D.K.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: Proceedings of FOCS, pp. 75–85 (1994)
Berman, P.: On-line searching and navigation. In: Fiat, A. (ed.) Dagstuhl Seminar 1996. LNCS, vol. 1442, pp. 232–241. Springer, Heidelberg (1998)
Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment. Machine Learning 18, 231–254 (1995)
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)
Deng, X., Papadimitriou, C.H.: Exploring an unknown graph (extended abstract). In: Proceedings of FOCS, pp. 355–361 (1990)
Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theoretical Computer Science 326(1-3), 343–362 (2004)
Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. ACM Trans. Algorithms 2, 380–402 (2006)
Dynia, M., Kutyłowski, J., der Heide, F.M.a., Schindelhauer, C.: Smart robot teams exploring sparse trees. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 327–338. Springer, Heidelberg (2006)
Dynia, M., Lopuszanski, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007)
Erdős, P.: Graph theory and probability. Canad. J. Math. 11, 34–38 (1959)
Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg (2005)
Fraigniaud, P., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Netw. 48, 166–177 (2006)
Fraigniaud, P., Ilcinkas, D., Pelc, A.: Impact of memory size on graph exploration capability. Discrete Applied Mathematics 156(12), 2310–2319 (2008)
Gal, S.: Search Games. Academic Press, London (1980)
Gąsieniec, L., Radzik, T.: Memory efficient anonymous graph exploration. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 14–29. Springer, Heidelberg (2008)
Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. Springer, Heidelberg (2002)
Hurkens, C.A.J., Woeginger, G.J.: On the nearest neighbor rule for the traveling salesman problem. Operations Research Letters 32(1), 1–4 (2004)
Kalyanasundaram, B., Pruhs, K.: Constructing competitive tours from local information. Theor. Comput. Sci. 130(1), 125–138 (1994)
Kwek, S.: On a simple depth-first search strategy for exploring unknown graphs. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 345–353. Springer, Heidelberg (1997)
Miyazaki, S., Morimoto, N., Okabe, Y.: The online graph exploration problem on restricted graphs. IEICE Transactions on Information and Systems E92.D(9), 1620–1627 (2009)
Panaite, P., Pelc, A.: Exploring unknown undirected graphs. Journal of Algorithms 33(2), 281–295 (1999)
Papadimitriou, C., Yannakakis, M.: Shortest paths without a map. Theoretical Computer Science 84(1), 127–150 (1991)
Rao, N., Kareti, S., Shi, W., Iyengar, S.: Robot navigation in unknown terrains: Introductory survey of nonheuristic algorithms. Report ORNL/TM-12410, Oak Ridge Nat. Lab (1993)
Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Megow, N., Mehlhorn, K., Schweitzer, P. (2011). Online Graph Exploration: New Results on Old and New Algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22012-8_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-22012-8_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22011-1
Online ISBN: 978-3-642-22012-8
eBook Packages: Computer ScienceComputer Science (R0)