Nothing Special   »   [go: up one dir, main page]

Skip to main content

Limits on the Computational Power of Random Strings

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Included in the following conference series:

Abstract

How powerful is the set of random strings? What can one say about a set A that is efficiently reducible to R, the set of Kolmogorov-random strings? We present the first upper bound on the class of computable sets in \(\mbox{\rm P}^R\) and \(\mbox{\rm NP}^R\).

The two most widely-studied notions of Kolmogorov complexity are the “plain” complexity C(x) and “prefix” complexity K(x); this gives two ways to define the set “R”: R C and R K . (Of course, each different choice of universal Turing machine U in the definition of C and K yields another variant \({R_{{C}_U}}\) or \({R_{{K}_U}}\).) Previous work on the power of “R” (for any of these variants [1,2,9]) has shown

  • \(\mbox{\rm BPP} \subseteq \{A : A \mbox{$\leq^{\rm p}_{\it tt}$} R\}\).

  • \(\mbox{\rm PSPACE} \subseteq \mbox{\rm P}^R\).

  • \(\mbox{\rm NEXP} \subseteq \mbox{\rm NP}^R\).

Since these inclusions hold irrespective of low-level details of how “R” is defined, we have e.g.: \(\mbox{\rm NEXP} \subseteq \mbox{$\Delta^0_1$} \cap \bigcap_U \mbox{\rm NP}^{{R_{{K}_U}}}\). (\(\mbox{$\Delta^0_1$}\) is the class of computable sets.)

Our main contribution is to present the first upper bounds on the complexity of sets that are efficiently reducible to \({R_{{K}_U}}\). We show:

  • \(\mbox{\rm BPP} \subseteq \mbox{$\Delta^0_1$} \cap \bigcap_U \{A : A \mbox{$\leq^{\rm p}_{\it tt}$} {R_{{K}_U}}\}\subseteq \mbox{\rm PSPACE}\).

  • \(\mbox{\rm NEXP} \subseteq \mbox{$\Delta^0_1$} \cap \bigcap_U \mbox{\rm NP}^{{R_{{K}_U}}}\subseteq \mbox{\rm EXPSPACE}\).

Hence, in particular, \(\mbox{\rm PSPACE}\) is sandwiched between the class of sets Turing- and truth-table-reducible to R.

As a side-product, we obtain new insight into the limits of techniques for derandomization from uniform hardness assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allender, E., Buhrman, H., Koucký, M.: What can be efficiently reduced to the Kolmogorov-random strings? Annals of Pure and Applied Logic 138, 2–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneburger, D.: Power from random strings. SIAM Journal on Computing 35, 1467–1493 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allender, E., Friedman, L., Gasarch, W.: Limits on the computational power of random strings. Technical Report TR10-139, Electronic Colloquium on Computational Complexity (2010)

    Google Scholar 

  4. Allender, E., Koucký, M., Ronneburger, D., Roy, S.: The pervasive reach of resource-bounded Kolmogorov complexity in computational complexity theory. Journal of Computer and System Sciences 77, 14–40 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity 3, 307–318 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Book, R.V.: On languages reducible to algorithmically random languages. SIAM Journal on Computing 23(6), 1275–1282 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Book, R.V., Lutz, J., Wagner, K.W.: An observation on probability versus randomness with applications to complexity classes. Mathematical Systems Theory 27(3), 201–209 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Book, R.V., Mayordomo, E.: On the robustness of ALMOST-r. RAIRO Informatique Théorique et Applications 30(2), 123–133 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Buhrman, H., Fortnow, L., Koucky, M., Loff, B.: Derandomizing from random strings. In: 25th IEEE Conference on Computational Complexity (CCC), pp. 58–63. IEEE Computer Society Press, Los Alamitos (2010)

    Google Scholar 

  10. Gutfreund, D., Vadhan, S.P.: Limitations of hardness vs. Randomness under uniform reductions. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 469–482. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Hitchcock, J.M.: Lower bounds for reducibility to the kolmogorov random strings. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 195–200. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Impagliazzo, R., Wigderson, A.: Randomness vs. time: de-randomization under a uniform assumption. J. Comput. Syst. Sci. 63(4), 672–688 (2001)

    Article  MATH  Google Scholar 

  13. Kabanets, V., Cai, J.-Y.: Circuit minimization problem. In: Proc. ACM Symp. on Theory of Computing (STOC), pp. 73–79 (2000)

    Google Scholar 

  14. Li, M., Vitanyi, P.: Introduction to Kolmogorov Complexity and its Applications, 3rd edn. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  15. Muchnik, A.A., Positselsky, S.: Kolmogorov entropy in the context of computability theory. Theoretical Computer Science 271, 15–35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Trevisan, L., Vadhan, S.P.: Pseudorandomness and average-case complexity via uniform reductions. Computational Complexity 16(4), 331–364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allender, E., Friedman, L., Gasarch, W. (2011). Limits on the Computational Power of Random Strings. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics