Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6784))

Included in the following conference series:

Abstract

Let P be a set of n points in the plane. Here we present an efficient algorithm to compute the smallest square containing at least k points of P for large values of k. The worst case time complexity of the algorithm is O(n + (n − k)log2 (n − k)) using O(n) space which is the best known bound for worst case time complexity.

A preliminary version of this paper was presented at an informal event SPSITM 2011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding k points with minimum diameter and related problems. Journal of Algorithms 12, 38–56 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in geometric optimization. Journal of Algorithms 17, 292–318 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ahn, H.-K., Won, B.S., Demaine, E.D., Demaine, M.L., Kim, S.-S., Korman, M., Reinbacher, I., Son, W.: Covering points by disjoint boxes with outliers. Computational Geometry: Theory and Applications 44, 178–190 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Andrews, H.C.: Introduction to mathematical techniques in pattern recognition. Wiley-Intersciences, New York (1972)

    MATH  Google Scholar 

  5. Asano, T., Bhattacharya, B., Keil, M., Yao, F.: Clustering algorithms based on maximum and minimum spanning trees. In: Proc. 4th Annual Symposium on Computational Geometry, pp. 252–257 (1988)

    Google Scholar 

  6. de Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  7. Chan, T.M.: Geometric Applications of a Randomized Optimization Technique. Discrete Computational Geometry 22, 547–567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Das, S., Goswami, P.P., Nandy, S.C.: Smallest k-point enclosing rectangle and square of arbitrary orientation. Information Processing Letters 94, 259–266 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Drezner, Z., Hamacher, H.: Facility Location: Applications and Theory. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  10. Datta, A., Lenhof, H.E., Schwarz, C., Smid, M.: Static and dynamic algorithms for k-point clustering problems. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1993. LNCS, vol. 709, pp. 265–276. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  11. Datta, A., Lenhof, H.E., Schwarz, C., Smid, M.: Static and Dynamic Algorithms for k-point Clustering Problems. Journal of Algorithms 19, 474–503 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eppstein, D., Erickson, J.: Iterated nearest neighbors and finding minimal polytopes. Discrete Computational Geometry 11, 321–350 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)

    MATH  Google Scholar 

  14. Megiddo, N.: Linear-Time Algorithms for Linear Programming in ℝ3 and Related Problems. SIAM Journal Computing 12, 759–776 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Matoušek, J.: On geometric optimization with few violated constraints. Discrete Computational Geometry 14, 365–384 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Majumder, S., Bhattacharya, B.B.: Density or Discrepancy: A VLSI Designer’s Dilemma in Hot Spot Analysis. Information Processing Letter 107, 177–182 (2008)

    Article  MathSciNet  Google Scholar 

  17. Mehlhorn, K.: Data structures and algorithms 3: multi-dimensional searching and computational geometry. Springer, New York (1984)

    Book  MATH  Google Scholar 

  18. O’Rourke, J., Aggarwal, A., Maddila, S., Baldwin, M.: An optimal algorithm for finding minimal enclosing triangles. Journal of Algorithms 7, 258–269 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. O’Rourke, J.: Finding minimal enclosing boxes. International Journal of Computer and Information Sciences 14, 183–199 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Preparata, F.P., Shamos, M.I.: Computational Geometry: an Introduction. Springer, Berlin (1990)

    MATH  Google Scholar 

  21. Segal, M., Kedem, K.: Enclosing k points in the smallest axis parallel rectangle. Information Processing Letter 65, 95–99 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Smid, M.: Finding k Points with a Smallest Enclosing Square, Report MPI-92-152, Max-Plank-Institute fur Informatik, Saarbriucken (1992)

    Google Scholar 

  23. Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proc. IEEE MELECON (1983)

    Google Scholar 

  24. Welzl, E.: Smallest enclosing disks (balls and ellipses). In: Maurer, H.A. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mahapatra, P.R.S., Karmakar, A., Das, S., Goswami, P.P. (2011). k-Enclosing Axis-Parallel Square. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21931-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21931-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21930-6

  • Online ISBN: 978-3-642-21931-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics