Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fr-ONT: An Algorithm for Frequent Concept Mining with Formal Ontologies

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6804))

Included in the following conference series:

Abstract

The paper introduces a task of frequent concept mining: mining frequent patterns of the form of (complex) concepts expressed in description logic. We devise an algorithm for mining frequent patterns expressed in standard \(\mathcal{EL}^{++}\) description logic language. We also report on the implementation of our method. As description logic provides the theorethical foundation for standard Web ontology language OWL, and description logic concepts correspond to OWL classes, we envisage the possible use of our proposed method on a broad range of data and knowledge intensive applications that exploit formal ontologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nienhuys-Cheng, S., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS (LNAI), vol. 1228. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  2. Dehaspe, L., Toivonen, H.: Discovery of frequent Datalog patterns. Data Mining and Knowledge Discovery 3(1), 7–36 (1999)

    Article  Google Scholar 

  3. Nijssen, S., Kok, J.: Faster association rules for multiple relations. In: Proc. of the 17th Int. Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 891–897 (2001)

    Google Scholar 

  4. de Raedt, L., Ramon, J.: Condensed representations for inductive logic programming. In: Proc. of the Ninth International Conference on Principles of Knowledge Representation and Reasoning (KR 2004), pp. 438–446 (2004)

    Google Scholar 

  5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  6. Lisi, F., Malerba, D.: Inducing multi-level association rules from multiple relations. Machine Learning Journal 55(2), 175–210 (2004)

    Article  MATH  Google Scholar 

  7. Józefowska, J., Ławrynowicz, A., Łukaszewski, T.: The role of semantics in mining frequent patterns from knowledge bases in description logics with rules. Theory and Practice of Logic Programming 10(3), 251–289 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berka, P.: Guide to the financial data set. In: PKDD 2000 Discovery Challenge (2000)

    Google Scholar 

  9. Kietz, J.U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(2), 193–218 (1994)

    Article  MATH  Google Scholar 

  10. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the Semantic Web. Appl. Intell. 26(2), 139–159 (2007)

    Article  Google Scholar 

  11. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Lehmann, J.: DL-learner: Learning concepts in description logics. Journal of Machine Learning Research (JMLR) 10, 2639–2642 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Baader, F., Molitor, R., Tobies, S.: Tractable and decidable fragments of conceptual graphs. In: Tepfenhart, W.M., Cyre, W.R. (eds.) ICCS 1999. LNCS, vol. 1640, pp. 480–493. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Lehmann, J., Haase, C.: Ideal downward refinement in the {EL} description logic. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 73–87. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Ławrynowicz, A.: Foundations of frequent concept mining with formal ontologies. In: Proc. of the ECML/PKDD 2010 Workshop on Third Generation Data Mining: Towards Service-oriented Knowledge Discovery (SoKD-10), pp. 45–50 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ławrynowicz, A., Potoniec, J. (2011). Fr-ONT: An Algorithm for Frequent Concept Mining with Formal Ontologies. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21916-0_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21915-3

  • Online ISBN: 978-3-642-21916-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics