Abstract
The paper introduces a task of frequent concept mining: mining frequent patterns of the form of (complex) concepts expressed in description logic. We devise an algorithm for mining frequent patterns expressed in standard \(\mathcal{EL}^{++}\) description logic language. We also report on the implementation of our method. As description logic provides the theorethical foundation for standard Web ontology language OWL, and description logic concepts correspond to OWL classes, we envisage the possible use of our proposed method on a broad range of data and knowledge intensive applications that exploit formal ontologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nienhuys-Cheng, S., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS (LNAI), vol. 1228. Springer, Heidelberg (1997)
Dehaspe, L., Toivonen, H.: Discovery of frequent Datalog patterns. Data Mining and Knowledge Discovery 3(1), 7–36 (1999)
Nijssen, S., Kok, J.: Faster association rules for multiple relations. In: Proc. of the 17th Int. Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 891–897 (2001)
de Raedt, L., Ramon, J.: Condensed representations for inductive logic programming. In: Proc. of the Ninth International Conference on Principles of Knowledge Representation and Reasoning (KR 2004), pp. 438–446 (2004)
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)
Lisi, F., Malerba, D.: Inducing multi-level association rules from multiple relations. Machine Learning Journal 55(2), 175–210 (2004)
Józefowska, J., Ławrynowicz, A., Łukaszewski, T.: The role of semantics in mining frequent patterns from knowledge bases in description logics with rules. Theory and Practice of Logic Programming 10(3), 251–289 (2010)
Berka, P.: Guide to the financial data set. In: PKDD 2000 Discovery Challenge (2000)
Kietz, J.U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(2), 193–218 (1994)
Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the Semantic Web. Appl. Intell. 26(2), 139–159 (2007)
Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)
Lehmann, J.: DL-learner: Learning concepts in description logics. Journal of Machine Learning Research (JMLR) 10, 2639–2642 (2009)
Baader, F., Molitor, R., Tobies, S.: Tractable and decidable fragments of conceptual graphs. In: Tepfenhart, W.M., Cyre, W.R. (eds.) ICCS 1999. LNCS, vol. 1640, pp. 480–493. Springer, Heidelberg (1999)
Lehmann, J., Haase, C.: Ideal downward refinement in the {EL} description logic. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 73–87. Springer, Heidelberg (2010)
Ławrynowicz, A.: Foundations of frequent concept mining with formal ontologies. In: Proc. of the ECML/PKDD 2010 Workshop on Third Generation Data Mining: Towards Service-oriented Knowledge Discovery (SoKD-10), pp. 45–50 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ławrynowicz, A., Potoniec, J. (2011). Fr-ONT: An Algorithm for Frequent Concept Mining with Formal Ontologies. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-21916-0_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21915-3
Online ISBN: 978-3-642-21916-0
eBook Packages: Computer ScienceComputer Science (R0)