Nothing Special   »   [go: up one dir, main page]

Skip to main content

Virtual Angioscopy Based on Implicit Vasculatures

  • Conference paper
Computational Science and Its Applications - ICCSA 2011 (ICCSA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6785))

Included in the following conference series:

Abstract

Virtual endoscopy is among the most active areas in medical data visualization, which focuses on the simulated visualizations of specific hollow organs for the purposes of training and diagnosis. In this paper, we present a virtual angioscopy technique based on vasculature geometry reconstructed using skeleton-based implicit splines (SIS). The highly accurate implicit representation of the vasculature not only makes it possible to achieve high visual quality of perspective view inside the vessel structures, but also makes the implementation of an interactive virtual angioscopy a much easier task, as the issue of collision detection of virtual camera with vascular objects can be easily solved when the vasculature is represented in implicit form. Some experiments have been carried out to demonstrate the strengths of our technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartz, D.: Virtual endoscopy in research and clinical practice. Computer Graphics Forum 24(1), 111–126 (2005)

    Article  Google Scholar 

  2. Wickham, J.: Minimally invasive surgery: Future developments. BMJ 308, 193–196 (1994)

    Article  Google Scholar 

  3. Hong, L., Muraki, S., Kaufman, A., Bartz, D., He, T.: Virtual voyage: Interactive navigation in the human colon. In: Proceedings of ACM SIGGRAPH, pp. 27–34 (1997)

    Google Scholar 

  4. Bartrolí, A.V.: Visualization Techniques for Virtual Endoscopy. PhD thesis, Technischse Universitä Wien (2001)

    Google Scholar 

  5. Ferretti, G.R., Vining, D.J., Knoplioch, J., Coulomb, M.: Tracheobronchial tree: Three-dimensional spiral ct with bronchoscopic perspective. Journal of Computer Assisted Tomography 20(5), 777–781 (1996)

    Article  Google Scholar 

  6. Auer, D.P., Auer, L.M.: Virtual endoscopy - a new tool for teaching and training in neuroimaging. International Journal of Neuroradiology 4, 3–14 (1998)

    Article  Google Scholar 

  7. Bartz, D., Skalej, M., Welte, D., Straßr, W., Duffner, F.: A virtual endoscopy system for the planning of endoscopic interventions in the ventricle system of the human brain. In: Proc. of BiOS 1999: Biomedical Diagnostics, Guidance and Surgical Assist Systems (1999)

    Google Scholar 

  8. Davis, C.P., Ladds, M.E., Romanowski, B.J., Wildermuth, S., Kopflioch, J.F., Debatin, J.F.: Human aorta: Preliminary results with virtual endoscopy based on three-dimensional mr imaging data sets. Radiology 199, 37–40 (1996)

    Article  Google Scholar 

  9. Gobbetti, E., Pili, P., Zorcolo, A., Tuveri, M.: Interactive virtual angioscopy. In: Proc. of IEEE Visualization, pp. 435–438 (1998)

    Google Scholar 

  10. Bartz, D., Straßr, W., Skalej, M., Welte, D.: Interactive exploration of extra and intracranial blood vessels. In: Proc. of IEEE Visualization, pp. 389–392 (1999)

    Google Scholar 

  11. Preim, B., Oeltze, S.: 3d visualization of vasculature: An overview. Visualization in Medicine and Life Science, 39–59 (2007)

    Google Scholar 

  12. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: Proc. of ACM SIGGRAPH, pp. 163–169 (1987)

    Google Scholar 

  13. Hong, Q., Li, Q., Tian, J.: Implicit reconstruction of vasculatures using implicit splines. submitted to IEEE Transactions on Medical Imaging (2011)

    Google Scholar 

  14. Elvins, T.: A survey of algorithms for volume visualization. Computer Graphics ACM Siggraph Quarterly 26(3), 194–201 (1992)

    Article  Google Scholar 

  15. Lorensen, W., Jolesz, F., Kikinis, R.: The exploration of cross-sectional data with a virtual endoscope. In: Satava, R., Morgan, K. (eds.) Interactive Technology and New Medical Paradigms for Health Care, pp. 221–230 (1995)

    Google Scholar 

  16. Nain, D., Haker, S., Kikinis, R., Grimson, W.: An interactive virtual endoscopy tool. In: Proceedings of Workshop on Interactive Medical Image Visualization and Analysis (2001)

    Google Scholar 

  17. Bruckner, S.: Efficient volume visualization of large medical datasets. Master’s thesis, Computer Science Department, Technical University of Vienna (2003)

    Google Scholar 

  18. Vining, D., Stelts, D., Ahn, D., Hemler, P., Ge, Y., Hunt, G., Siege, C., McCorquodale, D., Sarojak, M., Ferretti, G.: Freeflight: A virtual endoscopy system. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 413–416. Springer, Heidelberg (1997)

    Google Scholar 

  19. Tuy, H., Tuy, L.: Direct 2-d display of 3-d objects. IEEE Computer Graphics and Applications 4(10), 29–33 (1984)

    Article  Google Scholar 

  20. Westover, L.: Footprint evaluation for volume rendering. Computer Graphics 24(4), 367–376 (1990)

    Article  Google Scholar 

  21. Cabral, B., Cam, N., Foran, J.: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: 1994 Symposium on Volume Visualization, Conference Proceedings, ACM SIGGRAPH, pp. 91–98 (1994)

    Google Scholar 

  22. Serlie, I., Vos, F., Gelder, R.v., Post, F., Nio, Y., Gerritsen, F., Truyen, R., Stoker, J.: Improved visualization in virtual colonoscopy using image-based rendering. In: Data Visualization (Proceedings of Symposium on Visualization), pp. 137–146 (2001)

    Google Scholar 

  23. Beier, J., Diebold, T., Vehse, H., Biamino, G., Fleck, E., Felix, R.: Virtual endoscopy in the assessment of implanted aortic stents. Computer Assisted Radiology, 183–188 (1997)

    Google Scholar 

  24. Schumann, C., Oeltze, S., Bade, R., Preim, B., Peitgen, H.O.: Model-free surface visualization of vascular trees. In: IEEE/Eurographics Symposium on Visualization 2007, pp. 283–290 (2007)

    Google Scholar 

  25. Nakajima, N., Wada, J., Miki, T., Haraoka, J., Hata, N.: Surface rendering-based virtual intraventricular endoscopy: Retrospective feasibility study and comparison to volume rendering-based approach. NeuroImage 37 (suppl. 1), 89–99 (2007)

    Article  Google Scholar 

  26. Vilanova, A., Köig, A., Gröler, E.: Viren: A virtual endoscopy system. Journal Machine Graphics and Vision 8(3), 469–487 (1999)

    Google Scholar 

  27. Li, Q., Tian, J.: 2d piecewise algebraic splines for implicit modeling. ACM Transactions on Graphics 28(2) (2009)

    Google Scholar 

  28. Li, Q.: Smooth piecewise polynomial blending operations for implicit shapes. Computer Graphics forum 26(2), 157–171 (2007)

    Article  Google Scholar 

  29. Oeltze, S., Preim, B.: Visualization of vascular structures with convolution surfaces: Method, validation and evaluation. IEEE Transactions on Medical Imaging 25(3) (2005)

    Google Scholar 

  30. Lin, M., Gottschalk, S.: Collision detection between geometric models: A survey. In: Proc. of IMA Conference on Mathematics of Surfaces (1998)

    Google Scholar 

  31. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    MATH  Google Scholar 

  32. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  33. Louisa, N., Bruguiereb, E., Kobeiterb, H., Desgrangesa, P., Allairea, E., Kirschc, M., Becquemina, J.: Virtual angioscopy and 3-dimensional navigation findings of the aortic arch after vascular surgery. European Journal of Vascular and Endovascular Surgery 40(3), 340–347 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hong, Q., Li, Q., Tian, J. (2011). Virtual Angioscopy Based on Implicit Vasculatures. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21898-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21898-9_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21897-2

  • Online ISBN: 978-3-642-21898-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics