Abstract
Virtual endoscopy is among the most active areas in medical data visualization, which focuses on the simulated visualizations of specific hollow organs for the purposes of training and diagnosis. In this paper, we present a virtual angioscopy technique based on vasculature geometry reconstructed using skeleton-based implicit splines (SIS). The highly accurate implicit representation of the vasculature not only makes it possible to achieve high visual quality of perspective view inside the vessel structures, but also makes the implementation of an interactive virtual angioscopy a much easier task, as the issue of collision detection of virtual camera with vascular objects can be easily solved when the vasculature is represented in implicit form. Some experiments have been carried out to demonstrate the strengths of our technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bartz, D.: Virtual endoscopy in research and clinical practice. Computer Graphics Forum 24(1), 111–126 (2005)
Wickham, J.: Minimally invasive surgery: Future developments. BMJ 308, 193–196 (1994)
Hong, L., Muraki, S., Kaufman, A., Bartz, D., He, T.: Virtual voyage: Interactive navigation in the human colon. In: Proceedings of ACM SIGGRAPH, pp. 27–34 (1997)
Bartrolí, A.V.: Visualization Techniques for Virtual Endoscopy. PhD thesis, Technischse Universitä Wien (2001)
Ferretti, G.R., Vining, D.J., Knoplioch, J., Coulomb, M.: Tracheobronchial tree: Three-dimensional spiral ct with bronchoscopic perspective. Journal of Computer Assisted Tomography 20(5), 777–781 (1996)
Auer, D.P., Auer, L.M.: Virtual endoscopy - a new tool for teaching and training in neuroimaging. International Journal of Neuroradiology 4, 3–14 (1998)
Bartz, D., Skalej, M., Welte, D., Straßr, W., Duffner, F.: A virtual endoscopy system for the planning of endoscopic interventions in the ventricle system of the human brain. In: Proc. of BiOS 1999: Biomedical Diagnostics, Guidance and Surgical Assist Systems (1999)
Davis, C.P., Ladds, M.E., Romanowski, B.J., Wildermuth, S., Kopflioch, J.F., Debatin, J.F.: Human aorta: Preliminary results with virtual endoscopy based on three-dimensional mr imaging data sets. Radiology 199, 37–40 (1996)
Gobbetti, E., Pili, P., Zorcolo, A., Tuveri, M.: Interactive virtual angioscopy. In: Proc. of IEEE Visualization, pp. 435–438 (1998)
Bartz, D., Straßr, W., Skalej, M., Welte, D.: Interactive exploration of extra and intracranial blood vessels. In: Proc. of IEEE Visualization, pp. 389–392 (1999)
Preim, B., Oeltze, S.: 3d visualization of vasculature: An overview. Visualization in Medicine and Life Science, 39–59 (2007)
Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: Proc. of ACM SIGGRAPH, pp. 163–169 (1987)
Hong, Q., Li, Q., Tian, J.: Implicit reconstruction of vasculatures using implicit splines. submitted to IEEE Transactions on Medical Imaging (2011)
Elvins, T.: A survey of algorithms for volume visualization. Computer Graphics ACM Siggraph Quarterly 26(3), 194–201 (1992)
Lorensen, W., Jolesz, F., Kikinis, R.: The exploration of cross-sectional data with a virtual endoscope. In: Satava, R., Morgan, K. (eds.) Interactive Technology and New Medical Paradigms for Health Care, pp. 221–230 (1995)
Nain, D., Haker, S., Kikinis, R., Grimson, W.: An interactive virtual endoscopy tool. In: Proceedings of Workshop on Interactive Medical Image Visualization and Analysis (2001)
Bruckner, S.: Efficient volume visualization of large medical datasets. Master’s thesis, Computer Science Department, Technical University of Vienna (2003)
Vining, D., Stelts, D., Ahn, D., Hemler, P., Ge, Y., Hunt, G., Siege, C., McCorquodale, D., Sarojak, M., Ferretti, G.: Freeflight: A virtual endoscopy system. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 413–416. Springer, Heidelberg (1997)
Tuy, H., Tuy, L.: Direct 2-d display of 3-d objects. IEEE Computer Graphics and Applications 4(10), 29–33 (1984)
Westover, L.: Footprint evaluation for volume rendering. Computer Graphics 24(4), 367–376 (1990)
Cabral, B., Cam, N., Foran, J.: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: 1994 Symposium on Volume Visualization, Conference Proceedings, ACM SIGGRAPH, pp. 91–98 (1994)
Serlie, I., Vos, F., Gelder, R.v., Post, F., Nio, Y., Gerritsen, F., Truyen, R., Stoker, J.: Improved visualization in virtual colonoscopy using image-based rendering. In: Data Visualization (Proceedings of Symposium on Visualization), pp. 137–146 (2001)
Beier, J., Diebold, T., Vehse, H., Biamino, G., Fleck, E., Felix, R.: Virtual endoscopy in the assessment of implanted aortic stents. Computer Assisted Radiology, 183–188 (1997)
Schumann, C., Oeltze, S., Bade, R., Preim, B., Peitgen, H.O.: Model-free surface visualization of vascular trees. In: IEEE/Eurographics Symposium on Visualization 2007, pp. 283–290 (2007)
Nakajima, N., Wada, J., Miki, T., Haraoka, J., Hata, N.: Surface rendering-based virtual intraventricular endoscopy: Retrospective feasibility study and comparison to volume rendering-based approach. NeuroImage 37 (suppl. 1), 89–99 (2007)
Vilanova, A., Köig, A., Gröler, E.: Viren: A virtual endoscopy system. Journal Machine Graphics and Vision 8(3), 469–487 (1999)
Li, Q., Tian, J.: 2d piecewise algebraic splines for implicit modeling. ACM Transactions on Graphics 28(2) (2009)
Li, Q.: Smooth piecewise polynomial blending operations for implicit shapes. Computer Graphics forum 26(2), 157–171 (2007)
Oeltze, S., Preim, B.: Visualization of vascular structures with convolution surfaces: Method, validation and evaluation. IEEE Transactions on Medical Imaging 25(3) (2005)
Lin, M., Gottschalk, S.: Collision detection between geometric models: A survey. In: Proc. of IMA Conference on Mathematics of Surfaces (1998)
Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)
Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)
Louisa, N., Bruguiereb, E., Kobeiterb, H., Desgrangesa, P., Allairea, E., Kirschc, M., Becquemina, J.: Virtual angioscopy and 3-dimensional navigation findings of the aortic arch after vascular surgery. European Journal of Vascular and Endovascular Surgery 40(3), 340–347 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hong, Q., Li, Q., Tian, J. (2011). Virtual Angioscopy Based on Implicit Vasculatures. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21898-9_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-21898-9_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21897-2
Online ISBN: 978-3-642-21898-9
eBook Packages: Computer ScienceComputer Science (R0)