Abstract
The aim of this paper is to propose and apply state-of-the-art multiobjective scatter search for solving image segmentation problem. The algorithm incorporates the concepts of Pareto dominance, external archiving, diversification and intensification of solutions. The multiobjective optimization method is Archive-based Hybrid Scatter Search (AbYSS) for image segmentation. It utilized fuzzy clustering method with optimization of two fitness functions, viz., the global fuzzy compactness of the clusters and the fuzzy separation. We have tested the methods on two types of grey scale images, namely SAR (synthetic aperture radar) image and CT scan (Computer Tomography) image. We then compared it with fuzzy c-means (FCM) and a popular evolutionary multiobjective evolutionary clustering named NSGA-II. The performance result for the proposed method is compatible with the existing methods.
Chapter PDF
Similar content being viewed by others
References
Gonzalez, R.C., Woods, R.E.: Digital Image processing. Prentice-Hall, Englewood Cliffs (2007)
Zaart, A.E., Ziou, D., Wang, S., Jiang, Q.: Segmentation of SAR images using mixture of gamma distribution. Pattern Recognition 35(3), 713–724 (2002)
Lemarechal, C., Fjortoft, R., Marthon, P., Cubero-castan, E., Lopes, A.: SAR image segmentation by morphological methods. In: Proc. SPIE, vol. 3497, pp. 111–121 (1998)
Glover, F., Laguna, M., Martí, R.: Scatter search. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing: Theory and Applications, pp. 519–537. Springer, Heidelberg (2003)
Mukhopadhyaya, A., Maulik, U.: A multiobjective approach to MR brain image segmentation. Applied Soft Computing 11, 872–880 (2011)
Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: AbYSS: Adapting Scatter Search to Multiobjective Optimization. IEEE Transactions on Evo. Comp. 12(4) (2008)
Bezdek, J.C.: Cluster validity with fuzzy sets. Cybernetics and Systems, 58–73 (1974)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(2), 182–197 (2002)
Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Trans. on Evolutionary Computing 11(1), 56–76 (2007)
Saha, S., Bandyopadhyay, S.: Unsupervised pixel classification in satellite imagery using a new multiobjective symmetry based clustering approach. In: TENCON IEEE Region 10 Conference (2008)
Coello, C.A.C.: Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. Frontiers of Computer Science in China 3(1), 18–30 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bong, C.W., Lam, H.Y. (2011). Unsupervised Image Segmentation with Adaptive Archive-Based Evolutionary Multiobjective Clustering. In: Kuznetsov, S.O., Mandal, D.P., Kundu, M.K., Pal, S.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2011. Lecture Notes in Computer Science, vol 6744. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21786-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-21786-9_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21785-2
Online ISBN: 978-3-642-21786-9
eBook Packages: Computer ScienceComputer Science (R0)