Abstract
In this paper we investigate the problem of a Multiple-Input Multiple-Output (MIMO) frequency in a non-selective channel prediction. We develop a new method for the channel prediction which is based on the Least Squares Support Vector Machine (SVM). We develop a new method for the channel which allows us to predict a signal. The proposed method is evaluated through simulation in a MIMO system under a channel prediction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pedersen, K.I., Andersen, J.B., Kermoal, J.P., Mogensen, P.: A Stochastic Multiple-Input Multiple-Output Radio Channel Model for Evaluation of Space-Time Coding Algorithms. In: IEEE Vehicular Technology Conference, vol. 2, pp. 893–897 (2000)
Rappaport, T.S.: Wireless Communications: Principles and Practice, 2nd edn. Prentice-Hall Inc., Englewood Cliffs (2002)
3GPP TR25.869 Tx Diversity Solutions for Multiple Antennas, v1.2.0 (August 2003)
van Nee, R., Prasad, R.: OFDM for Wireless Multimedia Communications. Artech House Publishers, Boston (2000)
Jindal, N., Vishwanath, S., Goldsmith, A.: On the Duality of Gaussian Multiple-Access and Broadcast Channels. IEEE Trans. on Information Theory 50(5), 768–783 (2004)
Hao, X., Chizhik, D., Huang, H., Valenzuela, R.: A Generalized Space-Time Multiple-Input Multiple Output (MIMO) Channel Model. IEEE Trans. on Wireless Communications 3(3), 966–975 (2004)
Gesbert, D., Shafi, M., Shin, D.-S., Smith, P.J., Naguib, A.: From Theory to Practice: An Overview of MIMO Space-Time Coded Wireless Systems. IEEE Journal on Selected Areas in Communications 21(3), 281–302 (2003)
Shahtalebi, K., Bakhshi, G.R., Rad, H.S.: Full MIMO Channel Estimation Using a Simple Adaptive Partial Feedback Method (2007)
Ghogho, M., Swami, A.: Training Design for Multipath Channel and Frequency-Offset Estimation in MIMO Systems. IEEE Trans. on Signal Processing 54(6), 3957–3965 (2006)
Biguesh, M., Gershman, A.B.: Training-Based MIMO Channel Estimation: A Study of Estimator Tradeoffs and Optimal Training Signals. IEEE Trans. on Signal Processing 54(3), 884–893 (2006)
Cortes, C., Vapnik, V.: Support Vector Networks. Machine Learning 20, 273–297 (1995)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)
Schölkopf, B., Burges, C., Smola, A.: Advances in Kernel Methods Support Vector Learning. MIT Press, Cambridge (1999)
Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, New York (1998)
Rahman, S., Saito, M., Okada, M., Yamamoto, H.: An MC-CDMA Signal Equalization and Detection Scheme Based on Support Vector Machines. In: Proc. 1st Int. Symp. Wireless Communication Systems, pp. 11–15 (2004)
Sánchez-Fernández, M.P., de Prado-Cumlido, M., Arenas-Garcia, J., Perez-Cruz, F.: SVM Multiregression for Nonlinear Channel Estimation in Multiple-Input Multiple-Output Systems. IEEE Trans. on Signal Processing 52(8), 2298–2307 (2004)
Fernández-Getino Garcia, M.J., Rojo-Álvarez, J.L., Alonso-Atienzo, F., Martinez-Ramón, M.: Support Vector Machines for Robust Channel Estimation in OFDM. IEEE Signal Processing Letters 13(7), 397–400 (2006)
Suykens, J.A.K., Van Gestel, T., De Brabantter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific Pub. Co., Singapore (2002)
Rappaport, T.S.: Wireless Communications. Cambridge University Press, New York (2005)
Zheng, Y., Xiao, C.: Improved Models for the Generation of Multiple Uncorrelated Rayleigh Fading Waveforms. IEEE Trans. Commun. Letters 6(6), 256–258 (2002)
Suykens, J.A.K., Vandewalle, J.: Recurrent Least Squares Vector Machines. IEEE Trans. Circuits Systems and Systems I 47(7), 11109–11114 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martyna, J. (2011). The Least Squares SVM Approach for a Non-linear Channel Prediction in the MIMO System. In: Kwiecień, A., Gaj, P., Stera, P. (eds) Computer Networks. CN 2011. Communications in Computer and Information Science, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21771-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-21771-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21770-8
Online ISBN: 978-3-642-21771-5
eBook Packages: Computer ScienceComputer Science (R0)