Abstract
Forecasting road condition after maintenance can help in better road maintenance planning. As road administrations annually collect and store road-related data, data-driven methods can be used in determining forecasting models that result in improved accuracy. In this paper, we compare the prediction models identified by experts and currently used in road administration with simple data-driven prediction models, and parsimonious models based on a input selection algorithm. Furthermore, non-linear prediction using radial basis function networks is performed. We estimate and validate the prediction models with a database containing data of over two million road segments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1996)
Finnish Road Administration: PMSPro:n kuntoennustemallit 2004. Tiehallinnon selvityksiä 9/2005. Finnish Road Administration (2005) (in Finnish)
Finnish Road Administration: Tien päällysteen epätasaisuuden vaikutus ajoneuvojen vierintävastukseen ja ajoneuvokustannuksiin. Tiehallinnon selvityksiä 27/2005. Finnish Road Administration (2005) (in Finnish)
Finnish Transport Agency: Finnish Road Statistics 2009. Statistics from the Finnish Transport Agency 2/2010. Finnish Transport Agency (2010)
Finnish Transport Agency: Päällysteiden pintakarkeuden vaikutus tienkäyttäjiin ja tienpitoon. Liikenneviraston tutkimuksia ja selityksiä 1/2010. Finnish Transport Agency (2010) (in Finnish)
Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of Machine Learning Research 3, 1157–1182 (2003)
Kerali, H., Odoki, J.B., Stannard, E.: Overview of HDM-4. The Highway Development and Management Series, vol. 1. The World Road Association (2006)
Ruotoistenmäki, A.: Kuntotiedon käyttö tie- ja katuverkon ylläpidon päätöksenteossa. Tiehallinnon selvityksiä 7/2005. Finnish Road Administration (2005)
Sirvio, K., Hollmén, J.: Spatio-temporal road condition forecasting with markov chains and artificial neural networks. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 204–211. Springer, Heidelberg (2008)
Sirvio, K., Hollmén, J.: Multi-year network level road maintenance programming by genetic algorithms and variable neighbourhood search. In: Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, pp. 581–586 (2010)
Sirvio, K., Huda, K.: Implementation of the Road Assets Management System in Sindh Province of Pakistan, G1-01014. In: Viegas, J.M., Macário, R. (eds.) General Proceedings of the 12th World Conference on Transport Research Society (2010)
Tikka, J., Hollmén, J.: Sequential input selection algorithm for long-term prediction of time series. Neurocomputing 71, 2604–2615 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sirvio, K., Hollmén, J. (2011). Forecasting Road Condition after Maintenance Works by Linear Methods and Radial Basis Function Networks. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_52
Download citation
DOI: https://doi.org/10.1007/978-3-642-21738-8_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21737-1
Online ISBN: 978-3-642-21738-8
eBook Packages: Computer ScienceComputer Science (R0)