Nothing Special   »   [go: up one dir, main page]

Skip to main content

Forecasting Road Condition after Maintenance Works by Linear Methods and Radial Basis Function Networks

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6792))

Included in the following conference series:

  • 2399 Accesses

Abstract

Forecasting road condition after maintenance can help in better road maintenance planning. As road administrations annually collect and store road-related data, data-driven methods can be used in determining forecasting models that result in improved accuracy. In this paper, we compare the prediction models identified by experts and currently used in road administration with simple data-driven prediction models, and parsimonious models based on a input selection algorithm. Furthermore, non-linear prediction using radial basis function networks is performed. We estimate and validate the prediction models with a database containing data of over two million road segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  2. Finnish Road Administration: PMSPro:n kuntoennustemallit 2004. Tiehallinnon selvityksiä 9/2005. Finnish Road Administration (2005) (in Finnish)

    Google Scholar 

  3. Finnish Road Administration: Tien päällysteen epätasaisuuden vaikutus ajoneuvojen vierintävastukseen ja ajoneuvokustannuksiin. Tiehallinnon selvityksiä 27/2005. Finnish Road Administration (2005) (in Finnish)

    Google Scholar 

  4. Finnish Transport Agency: Finnish Road Statistics 2009. Statistics from the Finnish Transport Agency 2/2010. Finnish Transport Agency (2010)

    Google Scholar 

  5. Finnish Transport Agency: Päällysteiden pintakarkeuden vaikutus tienkäyttäjiin ja tienpitoon. Liikenneviraston tutkimuksia ja selityksiä 1/2010. Finnish Transport Agency (2010) (in Finnish)

    Google Scholar 

  6. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  7. Kerali, H., Odoki, J.B., Stannard, E.: Overview of HDM-4. The Highway Development and Management Series, vol. 1. The World Road Association (2006)

    Google Scholar 

  8. Ruotoistenmäki, A.: Kuntotiedon käyttö tie- ja katuverkon ylläpidon päätöksenteossa. Tiehallinnon selvityksiä 7/2005. Finnish Road Administration (2005)

    Google Scholar 

  9. Sirvio, K., Hollmén, J.: Spatio-temporal road condition forecasting with markov chains and artificial neural networks. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 204–211. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Sirvio, K., Hollmén, J.: Multi-year network level road maintenance programming by genetic algorithms and variable neighbourhood search. In: Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, pp. 581–586 (2010)

    Google Scholar 

  11. Sirvio, K., Huda, K.: Implementation of the Road Assets Management System in Sindh Province of Pakistan, G1-01014. In: Viegas, J.M., Macário, R. (eds.) General Proceedings of the 12th World Conference on Transport Research Society (2010)

    Google Scholar 

  12. Tikka, J., Hollmén, J.: Sequential input selection algorithm for long-term prediction of time series. Neurocomputing 71, 2604–2615 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sirvio, K., Hollmén, J. (2011). Forecasting Road Condition after Maintenance Works by Linear Methods and Radial Basis Function Networks. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21738-8_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21737-1

  • Online ISBN: 978-3-642-21738-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics