Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Designing of Spikes Band-Pass Filters for FPGA

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6792))

Included in the following conference series:

  • 2469 Accesses

Abstract

In this paper we present two implementations of spike-based bandpass filters, which are able to reject out-of-band frequency components in the spike domain. First one is based on the use of previously designed spike-based low-pass filters. With this architecture the quality factor, Q, is lower than 0.5. The second implementation is inspired in the analog multi-feedback filters (MFB) topology, it provides a higher than 1 Q factor, and ideally tends to infinite. These filters have been written in VHLD, and synthesized for FPGA. Two spike-based band-pass filters presented take advantages of the spike rate coded representation to perform a massively parallel processing without complex hardware units, like floating point arithmetic units, or a large memory. These low requirements of hardware allow the integration of a high number of filters inside a FPGA, allowing to process several spike coded signals fully in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lichtsteiner, P., et al.: A 128×128 120dB 15 us Asynchronous Temporal Contrast Vision Sensor. IEEE Journal on Solid-State Circuits 43(2) (2008)

    Article  Google Scholar 

  2. Chan, V., et al.: AER EAR: A Matched Silicon Cochlea Pair With Address Event Representation Interface. IEEE TCAS I 54(1) (2007)

    Google Scholar 

  3. Serrano-Gotarredona, R., et al.: On Real-Time AER 2-D Convolutions Hardware for Neuromorphic Spike-Based Cortical Processing. IEEE TNN 19(7) (2008)

    Article  Google Scholar 

  4. Oster, M., et al.: Quantifying Input and Output Spike Statistics of a Winner-Take-All Network in a Vision System. In: IEEE International Symposium on Circuits and Systems, ISCAS (2007)

    Google Scholar 

  5. Hafliger, P.: Adaptive WTA with an Analog VLSI Neuromorphic Learning Chip. IEEE Transactions on Neural Networks 18(2) (2007)

    Article  Google Scholar 

  6. Indiveri, G., et al.: A VLSI Array of Low-Power Spiking Neurons and Bistables Synapses with Spike-Timing Dependant Plasticity. IEEE Trans. on Neural Networks 17(1) (2006)

    Article  Google Scholar 

  7. Gomez-Rodriguez, F., et al.: AER Auditory Filtering and CPG for Robot Control. In: IEEE International Symposium on Circuits and Systems, ISCAS 2007 (2007)

    Google Scholar 

  8. Linares-Barranco, A., et al.: Using FPGA for visuo-motor control with a silicon retina and a humanoid robot. In: IEEE International Symposium on Circuits and Systems, ISCAS 2007 (2007)

    Google Scholar 

  9. Shepherd, G.: The Synaptic Organization of the Brain. Oxford University Press, Oxford (1990)

    Google Scholar 

  10. Jimenez-Fernandez, A., et al.: Simulating Building Blocks for Spikes Signals Processing. In: International WorkShop in Artificial Neural Networks , IWANN 2011 (2011)

    Google Scholar 

  11. Mahowald, M.: VLSI Analogs of Neuronal Visual Processing: A Synthesis of Form and Function. PhD. Thesis, California Institute of Technology Pasadena, California (1992)

    Google Scholar 

  12. Serrano-Gotarredona, R., et al.: CAVIAR: A 45k-neuron, 5M-synapse AER Hardware Sensory-Processing-Learning-Actuating System for High-Speed Visual Object Recognition and Tracking. IEEE Trans. on Neural Networks 20(9) (2009)

    Google Scholar 

  13. Gomez-Rodriguez, F., Paz, R., Miro, L., Linares-Barranco, A., Jimenez, G., Civit, A.: Two hardware implementations of the exhaustive synthetic AER generation method. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 534–540. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Paz-Vicente, R., et al.: Synthetic retina for AER systems development. In: International Conference on Computer Systems and Applications, AICCSA 2009 (2009)

    Google Scholar 

  15. Jimenez-Fernandez, A., et al.: AER-based robotic closed-loop control system. In: IEEE International Symposium on Circuits and Systems, ISCAS 2008 (2008)

    Google Scholar 

  16. Jimenez-Fernandez, A., et al.: AER and dynamic systems co-simulation over Simulink with Xilinx System Generator. In: IEEE Int.Symp. on Circuits and Systems, ISCAS 2008 (2008)

    Google Scholar 

  17. Jimenez-Fernandez, A., et al.: Building Blocks for Spike-based Signal Processing. In: IEEE International Joint Conference on Neural Networks, IJCNN 2010 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Domínguez-Morales, M., Jimenez-Fernandez, A., Cerezuela-Escudero, E., Paz-Vicente, R., Linares-Barranco, A., Jimenez, G. (2011). On the Designing of Spikes Band-Pass Filters for FPGA. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21738-8_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21737-1

  • Online ISBN: 978-3-642-21738-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics