Nothing Special   »   [go: up one dir, main page]

Skip to main content

Person Tracking Based on a Hybrid Neural Probabilistic Model

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6792))

Included in the following conference series:

Abstract

This article presents a novel approach for a real-time person tracking system based on particle filters that use different visual streams. Due to the difficulty of detecting a person from a top view, a new architecture is presented that integrates different vision streams by means of a Sigma-Pi network. A short-term memory mechanism enhances the tracking robustness. Experimental results show that robust real-time person tracking can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Bernardin, K., Gehrig, T., Stiefelhagen, R.: Multi-level particle filter fusion of features and cues for audio-visual person tracking. In: Stiefelhagen, R., Bowers, R., Fiscus, J.G. (eds.) RT 2007 and CLEAR 2007. LNCS, vol. 4625, pp. 70–81. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Hu, M.-K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)

    Article  Google Scholar 

  4. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  5. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artificial Intelligence 101(1-2), 99–134 (1998)

    Article  MathSciNet  Google Scholar 

  6. Nait-Charif, H., McKenna, S.J.: Activity summarisation and fall detection in a supportive home environment. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 4, pp. 323–326 (2004)

    Google Scholar 

  7. Piccardi, M.: Background subtraction techniques: a review. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3099–3104 (2004)

    Google Scholar 

  8. Sural, S., Qian, G., Pramanik, S.: Segmentation and histogram generation using the hsv color space for image retrieval. In: International Conference on Image Processing, vol. 2, pp. 589–592 (2002)

    Google Scholar 

  9. Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7, 11–32 (1991)

    Article  Google Scholar 

  10. Thrun, S.: Particle filters in robotics. In: Proceedings of the 17th Annual Conference on Uncertainty in AI (UAI), vol. 1 (2002)

    Google Scholar 

  11. Triesch, J., Malsburg, C.: Democratic integration: Self-organized integration of adaptive cues. Neural Computation 13(9), 2049–2074 (2001)

    Article  Google Scholar 

  12. West, G., Newman, C., Greenhill, S.: Using a Camera to Implement Virtual Sensors in a Smart House. In: From Smart Homes to Smart Care, pp. 83–90 (2005)

    Google Scholar 

  13. Zhang, H.B., Muhlenbein: Synthesis of Sigma-Pi neural networks by the breeder genetic programming. In: Proceedings of the First IEEE Conference on Evolutionary Computation, vol. 1, pp. 318–323 (June 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, W., Weber, C., Wermter, S. (2011). Person Tracking Based on a Hybrid Neural Probabilistic Model. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21738-8_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21737-1

  • Online ISBN: 978-3-642-21738-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics