Abstract
This article presents a novel approach for a real-time person tracking system based on particle filters that use different visual streams. Due to the difficulty of detecting a person from a top view, a new architecture is presented that integrates different vision streams by means of a Sigma-Pi network. A short-term memory mechanism enhances the tracking robustness. Experimental results show that robust real-time person tracking can be achieved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Bernardin, K., Gehrig, T., Stiefelhagen, R.: Multi-level particle filter fusion of features and cues for audio-visual person tracking. In: Stiefelhagen, R., Bowers, R., Fiscus, J.G. (eds.) RT 2007 and CLEAR 2007. LNCS, vol. 4625, pp. 70–81. Springer, Heidelberg (2008)
Hu, M.-K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)
Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artificial Intelligence 101(1-2), 99–134 (1998)
Nait-Charif, H., McKenna, S.J.: Activity summarisation and fall detection in a supportive home environment. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 4, pp. 323–326 (2004)
Piccardi, M.: Background subtraction techniques: a review. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3099–3104 (2004)
Sural, S., Qian, G., Pramanik, S.: Segmentation and histogram generation using the hsv color space for image retrieval. In: International Conference on Image Processing, vol. 2, pp. 589–592 (2002)
Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7, 11–32 (1991)
Thrun, S.: Particle filters in robotics. In: Proceedings of the 17th Annual Conference on Uncertainty in AI (UAI), vol. 1 (2002)
Triesch, J., Malsburg, C.: Democratic integration: Self-organized integration of adaptive cues. Neural Computation 13(9), 2049–2074 (2001)
West, G., Newman, C., Greenhill, S.: Using a Camera to Implement Virtual Sensors in a Smart House. In: From Smart Homes to Smart Care, pp. 83–90 (2005)
Zhang, H.B., Muhlenbein: Synthesis of Sigma-Pi neural networks by the breeder genetic programming. In: Proceedings of the First IEEE Conference on Evolutionary Computation, vol. 1, pp. 318–323 (June 1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yan, W., Weber, C., Wermter, S. (2011). Person Tracking Based on a Hybrid Neural Probabilistic Model. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-21738-8_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21737-1
Online ISBN: 978-3-642-21738-8
eBook Packages: Computer ScienceComputer Science (R0)