Abstract
A recently proposed novel statistical model estimates population effects and individual variability between subgroups simultaneously, by extending Lasso methods. We apply this ℓ1-penalized linear regression mixed-effects model to a large scale real world problem: by exploiting a large set of brain computer interface data we are able to obtain a subject-independent classifier that compares favorably with prior zero-training algorithms. This unifying model inherently compensates shifts in the input space attributed to the individuality of a subject. In particular we are now able to differentiate within-subject and between-subject variability. A deeper understanding both of the underlying statistical and physiological structure of the data is gained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andrew, G., Gao, J.: Scalable training of L 1-regularized log-linear models. In: Proceedings of the 24th international conference on Machine learning (ICML 2007), pp. 33–40. ACM Press, New York (2007)
Blankertz, B., Curio, G., Müller, K.R.: Classifying single trial EEG: Towards brain computer interfacing. In: Diettrich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Inf. Proc. Systems (NIPS 2001), vol. 14, pp. 157–164 (2002)
Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.R., Kunzmann, V., Losch, F., Curio, G.: The Berlin Brain-Computer Interface: EEG-based communication without subject training. IEEE Trans Neural Syst. Rehabil. Eng. 14, 147–152 (2006)
Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Proc. Magazine 25(1), 41–56 (2008)
Dornhege, G., Millán, J.R., Hinterberger, T., McFarland, D., Müller, K.R. (eds.): Toward Brain-Computer Interfacing. MIT Press, Cambridge, MA (2007)
Fazli, S., Grozea, C., Danoczy, M., Blankertz, B., Popescu, F., Muller, K.R.: Subject independent EEG-based BCI decoding. In: Advances in Neural Information Processing Systems 22, pp. 513–521. MIT Press, Cambridge (2009)
Fazli, S., Danóczy, M., Schelldorfer, J., Müller, K.R.: ℓ1-penalized Linear Mixed-Effects Models for high dimensional data with application to BCI. Neuroimage (2011), (in press)
Krauledat, M., Tangermann, M., Blankertz, B., Müller, K.R.: Towards zero training for brain-computer interfacing. PLoS ONE 3, e2967 (2008)
Pinheiro, J.C., Bates, D.M.: Mixed-Effects Models in S and S-Plus. Springer, New York (2000)
Schelldorfer, J., Bühlmann, P.: Estimation for high-dimensional linear mixed-effects models using ℓ1-penalization. arXiv preprint 1002.3784 (2010)
Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B 58, 267–288 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fazli, S., Danóczy, M., Schelldorfer, J., Müller, KR. (2011). ℓ1-Penalized Linear Mixed-Effects Models for BCI. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21735-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-21735-7_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21734-0
Online ISBN: 978-3-642-21735-7
eBook Packages: Computer ScienceComputer Science (R0)