Nothing Special   »   [go: up one dir, main page]

Skip to main content

1-Penalized Linear Mixed-Effects Models for BCI

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6791))

Included in the following conference series:

Abstract

A recently proposed novel statistical model estimates population effects and individual variability between subgroups simultaneously, by extending Lasso methods. We apply this ℓ1-penalized linear regression mixed-effects model to a large scale real world problem: by exploiting a large set of brain computer interface data we are able to obtain a subject-independent classifier that compares favorably with prior zero-training algorithms. This unifying model inherently compensates shifts in the input space attributed to the individuality of a subject. In particular we are now able to differentiate within-subject and between-subject variability. A deeper understanding both of the underlying statistical and physiological structure of the data is gained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrew, G., Gao, J.: Scalable training of L 1-regularized log-linear models. In: Proceedings of the 24th international conference on Machine learning (ICML 2007), pp. 33–40. ACM Press, New York (2007)

    Google Scholar 

  2. Blankertz, B., Curio, G., Müller, K.R.: Classifying single trial EEG: Towards brain computer interfacing. In: Diettrich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Inf. Proc. Systems (NIPS 2001), vol. 14, pp. 157–164 (2002)

    Google Scholar 

  3. Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.R., Kunzmann, V., Losch, F., Curio, G.: The Berlin Brain-Computer Interface: EEG-based communication without subject training. IEEE Trans Neural Syst. Rehabil. Eng. 14, 147–152 (2006)

    Article  Google Scholar 

  4. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Proc. Magazine 25(1), 41–56 (2008)

    Article  Google Scholar 

  5. Dornhege, G., Millán, J.R., Hinterberger, T., McFarland, D., Müller, K.R. (eds.): Toward Brain-Computer Interfacing. MIT Press, Cambridge, MA (2007)

    Google Scholar 

  6. Fazli, S., Grozea, C., Danoczy, M., Blankertz, B., Popescu, F., Muller, K.R.: Subject independent EEG-based BCI decoding. In: Advances in Neural Information Processing Systems 22, pp. 513–521. MIT Press, Cambridge (2009)

    Google Scholar 

  7. Fazli, S., Danóczy, M., Schelldorfer, J., Müller, K.R.: ℓ1-penalized Linear Mixed-Effects Models for high dimensional data with application to BCI. Neuroimage (2011), (in press)

    Google Scholar 

  8. Krauledat, M., Tangermann, M., Blankertz, B., Müller, K.R.: Towards zero training for brain-computer interfacing. PLoS ONE 3, e2967 (2008)

    Google Scholar 

  9. Pinheiro, J.C., Bates, D.M.: Mixed-Effects Models in S and S-Plus. Springer, New York (2000)

    Book  MATH  Google Scholar 

  10. Schelldorfer, J., Bühlmann, P.: Estimation for high-dimensional linear mixed-effects models using ℓ1-penalization. arXiv preprint 1002.3784 (2010)

    Google Scholar 

  11. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B 58, 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fazli, S., Danóczy, M., Schelldorfer, J., Müller, KR. (2011). ℓ1-Penalized Linear Mixed-Effects Models for BCI. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21735-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21735-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21734-0

  • Online ISBN: 978-3-642-21735-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics