Nothing Special   »   [go: up one dir, main page]

Skip to main content

Relevance Learning in Unsupervised Vector Quantization Based on Divergences

  • Conference paper
Advances in Self-Organizing Maps (WSOM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6731))

Included in the following conference series:

Abstract

We propose relevance learning for unsupervised online vector quantization algorithm based on stochastic gradient descent learning according to the given vector quantization cost function. We consider several widely used models including the neural gas algorithm, the Heskes variant of self-organizing maps and the fuzzy c-means. We apply the relevance learning scheme for divergence based similarity measures between prototypes and data vectors in the vector quantization schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnonkijpanich, B., Hasenfuss, A., Hammer, B.: Local matrix adaptation in topographic neural maps. Neurocomputing 74(4), 522–539 (2011)

    Article  Google Scholar 

  2. Backhaus, A., Kuwabara, A., Bauch, M., Monk, N., Sanguinetti, G., Fleming, A.: LEAFPROCESSOR: a new leaf phenotyping tool using contour bending energy and shape cluster analysis. New Phytologist 187(1), 251–261 (2010)

    Article  Google Scholar 

  3. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  MATH  Google Scholar 

  4. Bouveyron, C., Girard, S., Schmid, C.: High-dimensional data clustering. Computational Statistics and Data Analysis 57(1), 502–519 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bunte, K., Hammer, B., Wismüller, A., Biehl, M.: Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data. Neurocomputing 73, 1074–1092 (2010)

    Article  Google Scholar 

  6. Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 43(6), 1351–1362 (2005)

    Article  Google Scholar 

  7. Cesar, R.M., da Fontoura Costa, L.: Application and assessment of multiscale bending energy for morphometric characterization of neural cells. Rev. Sci. Instrum. 68(5), 2177–2186 (1997)

    Article  Google Scholar 

  8. Cichocki, A., Amari, S.-I.: Families of alpha- beta- and gamma- divergences: Flexible and robust measures of similarities. Entropy 12, 1532–1568 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunn, J.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics 3, 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059–1068 (2002)

    Article  Google Scholar 

  11. Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 303–316. Elsevier, Amsterdam (1999)

    Chapter  Google Scholar 

  12. Izakian, H., Abraham, A.: Fuzzy c-means and fuzzy swarm for fuzzy clustering problem. Expert Systems with Applications 38(3), 1835–1838 (2011)

    Article  Google Scholar 

  13. Kass, M., Witkin, A., Terzopoulos, D.: Snakes - Active Contour models. International Journal of Computer Vision 1(4), 321–331 (1987)

    Article  Google Scholar 

  14. Kato, T.: On the adiabatic theorem of quantum mechanics. Journal of the Physical Society of Japan 5(6), 435–439 (1950)

    Article  Google Scholar 

  15. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1995), 2nd extended edn. (1997)

    Google Scholar 

  16. Landgrebe, D.: Signal Theory Methods in Multispectral Remote Sensing. Wiley, Hoboken, New Jersey (2003)

    Book  Google Scholar 

  17. Lee, J., Verleysen, M.: Generalization of the lp norm for time series and its application to self-organizing maps. In: Cottrell, M. (ed.) Proc. of Workshop on Self-Organizing Maps (WSOM) 2005, Paris, Sorbonne, pp. 733–740 (2005)

    Google Scholar 

  18. Liu, Z.-Y., Xu, L.: Topological local principal component analysis. Neurocomputing 55(3-4), 739–745 (2003)

    Article  Google Scholar 

  19. López-Rubio, E., noz Pérez, J.M., Gómez-Ruiz, J.: A principal components analysis self-organizing map. Neural Networks 2(2), 261–270 (2004)

    Article  MATH  Google Scholar 

  20. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: ‘Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4(4), 558–569 (1993)

    Article  Google Scholar 

  21. Möller, R., Hoffmann, H.: An extension of neural gas to local PCA. Neurocomputing 62, 305–326 (2004)

    Article  Google Scholar 

  22. Mwebaze, E., Schneider, P., Schleif, F.-M., Aduwo, J., Quinn, J., Haase, S., Villmann, T., Biehl, M.: Divergence based classification in learning vector quantization. Neurocomputing 74(9), 1429–1435 (2011)

    Article  Google Scholar 

  23. Oja, E., Lampinen, J.: Unsupervised learning for feature extraction. In: Zurada, J.M., Marks II, R.J., Robinson, C.J. (eds.) Computational Intelligence Imitating Life, pp. 13–22. IEEE Press, Los Alamitos (1994)

    Google Scholar 

  24. Principe, J.C., Fisher III, J., Xu, D.: Information theoretic learning. In: Haykin, S. (ed.) Unsupervised Adaptive Filtering, Wiley, New York (2000)

    Google Scholar 

  25. Rubner, J., Tavan, P.: A self-organizing network for principle-component analysis. Europhys. Letters 7(10), 693–698 (1989)

    Article  Google Scholar 

  26. Schneider, P., Hammer, B., Biehl, M.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21, 3532–3561 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tipping, M., Bishop, C.: Mixtures of probabilistic principal component analyzers. Neural Computation 11, 443–482 (1999)

    Article  Google Scholar 

  28. van Hulle, M.M.: Faithful representations with topographic maps. Neural Networks 12(6), 803–823 (1999)

    Article  Google Scholar 

  29. Villmann, T., Cichocki, A., Principe, J.: Information theory related learning. In: Verleysen, M. (ed.) Proc. of European Symposium on Artificial Neural Networks (ESANN 2011), Evere, Belgium, d-side publications (2011) (page in press)

    Google Scholar 

  30. Villmann, T., Der, R., Herrmann, M., Martinetz, T.: Topology Preservation in Self-Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks 8(2), 256–266 (1997)

    Article  Google Scholar 

  31. Villmann, T., Haase, S.: Divergence based vector quantization. Neural Computation 23(5), 1343–1392 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Villmann, T., Hammer, B.: Theoretical aspects of kernel GLVQ with differentiable kernel. IfI Technical Report Series (IfI-09-12), pp. 133–141 (2009)

    Google Scholar 

  33. Villmann, T., Schleif, F.-M.: Functional vector quantization by neural maps. In: Chanussot, J. (ed.) Proceedings of First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS 2009), pp. 1–4. IEEE Press, Los Alamitos (2009); ISBN 978-1-4244-4948-4

    Google Scholar 

  34. Xie, X., Beni, G.: A validity measure for fuzzy clustering. IEEE Transactions on Pat 13(8), 841–847 (1991)

    Article  Google Scholar 

  35. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)

    Article  Google Scholar 

  36. Young, I.T., Walker, J.E., Bowie, J.E.: An analysis technique for biological shape. i. Information and Control 25(4), 357–370 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zalik, K., Zalik, B.: Validity index for clusters of different sizes and densities. Pattern Recognition Letters 32, 221–234 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kästner, M., Backhaus, A., Geweniger, T., Haase, S., Seiffert, U., Villmann, T. (2011). Relevance Learning in Unsupervised Vector Quantization Based on Divergences. In: Laaksonen, J., Honkela, T. (eds) Advances in Self-Organizing Maps. WSOM 2011. Lecture Notes in Computer Science, vol 6731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21566-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21566-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21565-0

  • Online ISBN: 978-3-642-21566-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics