Nothing Special   »   [go: up one dir, main page]

Skip to main content

Spectral Clustering as an Automated SOM Segmentation Tool

  • Conference paper
Advances in Self-Organizing Maps (WSOM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6731))

Included in the following conference series:

Abstract

A powerful method in knowledge discovery and cluster extraction is the use of self-organizing maps (SOMs), which provide adaptive quantization of the data together with its topologically ordered lower-dimensional representation on a rigid lattice. The knowledge extraction from SOMs is often performed interactively from informative visualizations. Even though interactive cluster extraction is successful, it is often time consuming and usually not straightforward for inexperienced users. In order to cope with the need of fast and accurate analysis of increasing amount of data, automated methods for SOM clustering have been popular. In this study, we use spectral clustering, a graph partitioning method based on eigenvector decomposition, for automated clustering of the SOM. Experimental results based on seven real data sets indicate that spectral clustering can successfully be used as an automated SOM segmentation tool, and it outperforms hierarchical clustering methods with distance based similarity measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vesanto, J.: SOM-based data visualization methods. Intelligent Data Analysis 3(2), 111–126 (1999)

    Article  MATH  Google Scholar 

  2. Taşdemir, K., Merényi, E.: Exploiting data topology in visualization and clustering of Self-Organizing Maps. IEEE Transactions on Neural Networks 20(4), 549–562 (2009)

    Article  Google Scholar 

  3. Ultsch, A.: Self-organizing neural networks for visualization and classification. In: Lausen, O.B., Klar, R. (eds.) Information and Classification-Concepts, Methods and Applications, pp. 307–313. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  4. Murtagh, F.: Interpreting the Kohonen self-organizing map using contiguity-constrained clustering. Pattern Recognition Letters 16, 399–408 (1995)

    Article  Google Scholar 

  5. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)

    Article  Google Scholar 

  6. Cottrell, M., Rousset, P.: The Kohonen algorithm: A powerful tool for analyzing and representing multidimensional quantitative and qualitative data. In: Cabestany, J., Mira, J., Moreno-Díaz, R. (eds.) IWANN 1997. LNCS, vol. 1240, pp. 861–871. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Halkidi, M., Vazirgiannis, M.: A density-based cluster validity approach using multi-representatives. Pattern Recognition Letters (6), 773–786 (2008)

    Google Scholar 

  8. Wu, S., Chow, W.: Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density. Pattern Recognition (37), 175–188 (2004)

    Google Scholar 

  9. Brugger, D., Bogdan, M., Rosenstiel, W.: Automatic cluster detection in Kohonen’s SOM. IEEE Transactions on Neural Networks 19(3), 442–459 (2008)

    Article  Google Scholar 

  10. Taşdemir, K., Milenov, P.: An automated SOM clustering based on data topology. In: Proc. 18th European Symposium on Artificial Neural Networks (ESANN 2010), Bruges, Belgium, D-Facto, April 27-30, 2010, pp. 375–380 (2010)

    Google Scholar 

  11. von Luxburg, U.: A tutorial on spectral clustering. Technical Report TR-149, Max Planck Institute for Biological Cybernetics (March 2007)

    Google Scholar 

  12. Wang, L., Leckie, C., Ramamohanarao, K., Bezdek, J.: Approximate spectral clustering. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 134–146. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Zhang, X., Jiao, L., Liu, F., Bo, L., Gong, M.: Spectral clustering ensemble applied to SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing 46(7) (July 2008)

    Google Scholar 

  14. Saalbach, A., Twellmann, T., Nattkemper, T.W.: Spectral clustering for data categorization based on self-organizing maps. In: Nasrabadi, N.M., Rizvi, S.A. (eds.) SPIE Proceedings, Applications of Neural Networks and Machine Learning in Image Processing IX, vol. 5673, pp. 12–18 (2005)

    Google Scholar 

  15. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  16. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, MIT Press, Cambridge (2002)

    Google Scholar 

  17. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems (2004)

    Google Scholar 

  18. Ultsch, A.: Maps for the visualization of high-dimensional data spaces. In: WSOM, vol. 3, pp. 225–230 (2003)

    Google Scholar 

  19. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  20. Carpenter, G.A., Martens, S., Ogas, O.J.: Self-organizing information fusion and hierarchical knowledge discovery: a new framework using ARTMAP neural networks. Neural Networks 18(3), 287–295 (2005)

    Article  Google Scholar 

  21. Jain, A., Murty, M.N., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  22. Christopher, D., Manning, P.R., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taşdemir, K. (2011). Spectral Clustering as an Automated SOM Segmentation Tool. In: Laaksonen, J., Honkela, T. (eds) Advances in Self-Organizing Maps. WSOM 2011. Lecture Notes in Computer Science, vol 6731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21566-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21566-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21565-0

  • Online ISBN: 978-3-642-21566-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics