Abstract
A powerful method in knowledge discovery and cluster extraction is the use of self-organizing maps (SOMs), which provide adaptive quantization of the data together with its topologically ordered lower-dimensional representation on a rigid lattice. The knowledge extraction from SOMs is often performed interactively from informative visualizations. Even though interactive cluster extraction is successful, it is often time consuming and usually not straightforward for inexperienced users. In order to cope with the need of fast and accurate analysis of increasing amount of data, automated methods for SOM clustering have been popular. In this study, we use spectral clustering, a graph partitioning method based on eigenvector decomposition, for automated clustering of the SOM. Experimental results based on seven real data sets indicate that spectral clustering can successfully be used as an automated SOM segmentation tool, and it outperforms hierarchical clustering methods with distance based similarity measures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vesanto, J.: SOM-based data visualization methods. Intelligent Data Analysis 3(2), 111–126 (1999)
Taşdemir, K., Merényi, E.: Exploiting data topology in visualization and clustering of Self-Organizing Maps. IEEE Transactions on Neural Networks 20(4), 549–562 (2009)
Ultsch, A.: Self-organizing neural networks for visualization and classification. In: Lausen, O.B., Klar, R. (eds.) Information and Classification-Concepts, Methods and Applications, pp. 307–313. Springer, Heidelberg (1993)
Murtagh, F.: Interpreting the Kohonen self-organizing map using contiguity-constrained clustering. Pattern Recognition Letters 16, 399–408 (1995)
Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)
Cottrell, M., Rousset, P.: The Kohonen algorithm: A powerful tool for analyzing and representing multidimensional quantitative and qualitative data. In: Cabestany, J., Mira, J., Moreno-Díaz, R. (eds.) IWANN 1997. LNCS, vol. 1240, pp. 861–871. Springer, Heidelberg (1997)
Halkidi, M., Vazirgiannis, M.: A density-based cluster validity approach using multi-representatives. Pattern Recognition Letters (6), 773–786 (2008)
Wu, S., Chow, W.: Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density. Pattern Recognition (37), 175–188 (2004)
Brugger, D., Bogdan, M., Rosenstiel, W.: Automatic cluster detection in Kohonen’s SOM. IEEE Transactions on Neural Networks 19(3), 442–459 (2008)
Taşdemir, K., Milenov, P.: An automated SOM clustering based on data topology. In: Proc. 18th European Symposium on Artificial Neural Networks (ESANN 2010), Bruges, Belgium, D-Facto, April 27-30, 2010, pp. 375–380 (2010)
von Luxburg, U.: A tutorial on spectral clustering. Technical Report TR-149, Max Planck Institute for Biological Cybernetics (March 2007)
Wang, L., Leckie, C., Ramamohanarao, K., Bezdek, J.: Approximate spectral clustering. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 134–146. Springer, Heidelberg (2009)
Zhang, X., Jiao, L., Liu, F., Bo, L., Gong, M.: Spectral clustering ensemble applied to SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing 46(7) (July 2008)
Saalbach, A., Twellmann, T., Nattkemper, T.W.: Spectral clustering for data categorization based on self-organizing maps. In: Nasrabadi, N.M., Rizvi, S.A. (eds.) SPIE Proceedings, Applications of Neural Networks and Machine Learning in Image Processing IX, vol. 5673, pp. 12–18 (2005)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)
Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, MIT Press, Cambridge (2002)
Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems (2004)
Ultsch, A.: Maps for the visualization of high-dimensional data spaces. In: WSOM, vol. 3, pp. 225–230 (2003)
Asuncion, A., Newman, D.: UCI machine learning repository (2007)
Carpenter, G.A., Martens, S., Ogas, O.J.: Self-organizing information fusion and hierarchical knowledge discovery: a new framework using ARTMAP neural networks. Neural Networks 18(3), 287–295 (2005)
Jain, A., Murty, M.N., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)
Christopher, D., Manning, P.R., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Taşdemir, K. (2011). Spectral Clustering as an Automated SOM Segmentation Tool. In: Laaksonen, J., Honkela, T. (eds) Advances in Self-Organizing Maps. WSOM 2011. Lecture Notes in Computer Science, vol 6731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21566-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-21566-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21565-0
Online ISBN: 978-3-642-21566-7
eBook Packages: Computer ScienceComputer Science (R0)