Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Combinatorial Approaches of Computing Upper Bounds on the Information Rate of Secret Sharing Schemes

  • Conference paper
Information Security and Cryptology (Inscrypt 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6584))

Included in the following conference series:

Abstract

Computing the information rate of access structures is an important part of the research of secret sharing schemes. In this paper, we investigate two combinatorial approaches of computing upper bounds on the information rate of access structures - the Csirmaz’s polymatroid approach and the independent sequence approach. We prove that the Csirmaz’s polymatroid approach is only a special variant of the independent sequence approach, and finding an independent sequence with respect to a graph-based access structure with maximum length is equivalent to finding a maximum alternating cycle-free matching in a bipartite graph, which is a NP hard problem.

Supported by National Natural Science Foundation of China (Grant No. 60573004) and National Basic Research Program of China (973 Program, Grant No. 2007CB311202).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS 1979 Nat. Computer Conf., vol. 48, pp. 313–317 (1979)

    Google Scholar 

  2. Blundo, C., De Santis, A., De Simone, R., Vaccaro, U.: Tight bounds on the information rate of secret sharing schemes. Designs, Codes and Cryptography 11(2), 107–110 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blundo, C., De Santis, A., Gaggia, A.G., Vaccaro, U.: New bounds on the information rate of secret sharing schemes. IEEE Transactions on Information Theory IT-41(2), 549–554 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 148–167. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  5. Blundo, C., De Santis, A., Stinson, D.R., Vaccaro, U.: Graph decompositions and secret sharing schemes. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 1–24. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  6. Brickell, E.F., Stinson, D.R.: Some improved bounds on the information rate of perfect secret sharing schemes. Journal of Cryptology 5(3), 153–166 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares for secret sharing schemes. Journal of Cryptology 6(3), 157–169 (1993)

    Article  MATH  Google Scholar 

  8. Csirmaz, L.: The size of a share must be large. Journal of Cryptology 10(4), 223–231 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Csirmaz, L., Tardos, G.: Secret sharing on trees: problem solved. Cryptology ePrint Archive, Report 2009/071 (2009), http://eprint.iacr.org/

  10. Dahlhaus, E.: The computation of the jump number of convex graphs. In: Bouchitté, V., Morvan, M. (eds.) ORDAL 1994. LNCS, vol. 831, pp. 176–185. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  11. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Proc. IEEE Global Telecommunication Conf., Globecom 1987, pp. 99–102 (1987)

    Google Scholar 

  12. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Transactions on Information Theory IT-29(1), 35–41 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Müller, H.: Alternating cycle-free matchings. Order 7(1), 11–21 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Oxley, J.G.: Matroid Theory. Oxford University Press, New York (1992)

    MATH  Google Scholar 

  15. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. van Dijk, M.: On the information rate of perfect secret sharing schemes. Designs, Codes and Cryptography 6(2), 143–169 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Welsh, D.J.A.: Matroid Theory. Academic, London (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, Z. (2011). On the Combinatorial Approaches of Computing Upper Bounds on the Information Rate of Secret Sharing Schemes. In: Lai, X., Yung, M., Lin, D. (eds) Information Security and Cryptology. Inscrypt 2010. Lecture Notes in Computer Science, vol 6584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21518-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21518-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21517-9

  • Online ISBN: 978-3-642-21518-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics