Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Improved Co-Evolution Genetic Algorithm for Combinatorial Optimization Problems

  • Conference paper
Advances in Swarm Intelligence (ICSI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6728))

Included in the following conference series:

  • 3108 Accesses

Abstract

This paper presents an improved co-evolution genetic algorithm (ICGA), which uses the methodology of game theory to solve the mode deception and premature convergence problem. In ICGA, groups become different players in the game. Mutation operator is designed to simulate the situation in the evolutionary stable strategy. Information transfer mode is added to ICGA to provide greater decision-making space. ICGA is used to solve large-scale deceptive problems and an optimal control problem. Results of numerical tests validate the algorithm’s excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Holland, J.: Adaptation in Natural and Artificial Systems. The MIT Press, Cambridge (1992)

    Google Scholar 

  2. Goldberg, D.E.: Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley, Massachusetts (1998)

    Google Scholar 

  3. Goldberg, D.E.: Messy Genetic Algorithms Revisited Studies in Mixed Size and Scale. Complex Systems 4, 415–444 (1990)

    MATH  Google Scholar 

  4. Ye, J., Liu, X., Lu, H.: An Evolutionary Algorithm based on Stochastic Weighted Learning for Continuous Optimization. In: 2003 IEEE International Conference on Neural Networks & Signal Processing, Nanjing, China, pp. 14–17 (2003)

    Google Scholar 

  5. Liu, J., Zhong, W., Jiao, L., Liu, F.: Multiobjective optimization based on coevolutionary algorithm. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 774–779. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Weibull, J.W.: Evolutionary Game Theory. The MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  7. Li, Y., Liu, Y., Liu, X.: Active Vibration Control of a Modular Robot Combining a BP Neural Network with a Genetic Algorithm. Journal of Vibration and Control 11(1), 3–17 (2005)

    Article  MATH  Google Scholar 

  8. Rasmusen, E.: Games and information. Basil Blackwell, Oxford (2006)

    MATH  Google Scholar 

  9. Liu, J., Zhong, W., Jiao, L.: A multiagent evolutionary algorithm for combinatorial optimization problems. IEEE Trans. on Systems, Man, and Cybernetics, Part B (2009) (in press)

    Google Scholar 

  10. Pelikan, M., Goldberg, D.E.: BOA: The Bayesian optimization Algorithm. IlliGAL Report. 98013. Illinois Genetic Algorithms Lab., Univ. Illinois, Urbana-Champaign, Urbana, IL (1998)

    Google Scholar 

  11. Lin, Y., Yang, X.: Research on fast evolutionary algorithms based on probabilistic models. Acta Electronica Sinica 29(2), 178–181 (2001) (in Chinese)

    Google Scholar 

  12. Wu, S., Zhang, Q., Chen, H.: A new evolutionary algorithm based on family eugenics. J. Softw. 8(2), 137–144 (1997) (in Chinese)

    Google Scholar 

  13. Pelikan, M.: Bayesian Optimization Algorithm: From Single Level to Hierarchy. Illinois Genetic Algorithms Lab., Univ. Illinois, Urbana-Champaign, Urbana, IL (2002)

    Google Scholar 

  14. Li, Y., Leong, S.H.: Kinematics Control of Redundant Manipulators Using CMAC Neural Network Combined with Genetic Algorithm. Robotica 22(6), 611–621 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, N., Luo, Y. (2011). An Improved Co-Evolution Genetic Algorithm for Combinatorial Optimization Problems. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds) Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, vol 6728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21515-5_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21515-5_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21514-8

  • Online ISBN: 978-3-642-21515-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics