Nothing Special   »   [go: up one dir, main page]

Skip to main content

Clustering Aggregation for Improving Ant Based Clustering

  • Conference paper
Advances in Swarm Intelligence (ICSI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6728))

Included in the following conference series:

Abstract

In this paper, we propose a hybridization between an ant-based clustering algorithm: CAC (Communicating Ants for Clustering) algorithm [5] and a clustering aggregation algorithm: the Furthest algorithm [6]. The CAC algorithm takes inspiration from the sound communication properties of real ants. In this algorithm, artificial ants communicate directly with each other in order to achieve the clustering task. The Furthest algorithm takes as inputs m clusterings given by m different runs of the CAC algorithm, and tries to find a clustering that matches, as possible, all the clusterings given as inputs. This hybridization shows an improvement of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blake, C., Merz, C.: UCI Repository of machine learning databases, University of California, Irvine, Dept. of Information and Computer Sciences

    Google Scholar 

  2. Cui, X., Potok, T.E., Palathingal, P.: Document Clustering using Particle Swarm Optimization. In: IEEE Swarm Intelligence Symposium, The Westin (2005)

    Google Scholar 

  3. Delgado, M., Skrmeta, A.G., Barber, H.M.: A Tabu Search Approach To The Fuzzy Clustering Problem. In: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, pp. 125–130 (1997)

    Google Scholar 

  4. Deneubourg, J.L., Goss, S., Franks, N., Sendova Franks, A., Detrain, C., Chretien, L.: The dynamics of collective sorting: robot-like ant and ant-like robots. In: Meyer, J.-J., Wilson, S. (eds.) Proceedings of the First International Conference on Simulation of Adaptative Behavior, Paris, France, pp. 356–365 (1990)

    Google Scholar 

  5. Elkamel, A., Gzara, M., Jamoussi, S., Ben Abdallah, H.: An ant-based algorithm for clustering. In: The 7th ACS/IEEE International Conference on Computer Systems and Applications, Rabat, Morocco, pp. 76-82 (2009)

    Google Scholar 

  6. Gionis, A., Mannila, H., Tsaparas, P.: Clustering Aggregation. ACM Transactions on Knowledge Discovery from Data 1(1), Article 4 (2007)

    Google Scholar 

  7. Guojun, G., Chaoqun, M., Jianhong, W.: Data Clustering: Theory, Algorithms, and Applications. ASA-SIAM Series on Statistics and Applied Probability (2007)

    Google Scholar 

  8. Hickling, R., Brown, R.L.: Analysis of acoustic communication by ants. J. Acoust. Soc. Am. 108(4), 1920–1929 (2000)

    Article  Google Scholar 

  9. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  10. Knight, T., Timmis, J.: A Multi-Layered Immune Inspired Approach to Data Mining. In: Lotfi, A., Garibaldi, J., John, R. (eds.) Proceedings of the 4th International Conference on Recent Advances in Soft Computing, Nottingham, UK, pp. 266–271 (December 2002)

    Google Scholar 

  11. Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Proceedings of the Third International Conference on Simulation of Adaptive Behaviour, pp. 501–508 (1994)

    Google Scholar 

  12. Raghavan, V.V., Birchard, K.: A clustering strategy based on a formalism of the reproductive process in natural systems. In: Proceedings of the Second International Conference on Information Storage and Retrieval, pp. 10–22. ACM, New York (1979)

    Google Scholar 

  13. Selim, S.Z., Alsultan, K.: A simulated annealing algorithm for the clustering problem. Pattern Recognition 24(7), 1003–1008 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elkamel, A., Gzara, M., Ben-Abdallah, H. (2011). Clustering Aggregation for Improving Ant Based Clustering. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds) Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, vol 6728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21515-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21515-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21514-8

  • Online ISBN: 978-3-642-21515-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics