Nothing Special   »   [go: up one dir, main page]

Skip to main content

An AER to CAN Bridge for Spike-Based Robot Control

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Abstract

Address-Event-Representation (AER) is a bio-inspired communication protocol between chips. A set of AER sensors (retina and cochleas), processors (convolvers, WTA, mappers, …) and actuators can be found in the literature that have been specifically designed for mimicking the communication principle in the brain: spikes. The problem when developing complex robots based on AER (or spikes) is to command actuators (motors) directly with spikes. Commercial robots are usually based on commercial standards (CAN) that do not allow powering actuators directly with spikes. This paper presents a co-design FPGA and embedded computer system that implements a bridge between these two protocols: CAN and AER. The bridge has been analyzed under the Spanish project VULCANO with an arm robot and a Shadow anthropomorphic hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lichtsteiner, P., Posh, C., Delbruck, T.: A 128×128 120dB 15 us Asynchronous Temporal Contrast Vision Sensor. IEEE Journal on Solid-State Circuits 43(2), 566–576 (2008)

    Article  Google Scholar 

  2. Chan, V., Liu, S.C., van Schaik, A.: AER EAR: A Matched Silicon Cochlea Pair with Address-Event-Representation Interface. IEEE Trans. Circuits and Systems-I 54(1), 48–59 (2007)

    Article  Google Scholar 

  3. Costas-Santos, J., Serrano-Gotarredona, T., Serrano-Gotarredona, R., Linares-Barranco, B.: A Spatial Contrast Retina with On-chip Calibration for Neuromorphic Spike-Based AER Vision Systems. IEEE Trans. Circuits and Systems-I 54(7), 1444–1458 (2007)

    Article  Google Scholar 

  4. Serrano-Gotarredona, R., et al.: A Neuromorphic Cortical-Layer Microchip for Spike-Based Event Processing Vision Systems. IEEE T. Circuits Systems-I 53(12), 2548–2566 (2006)

    Article  Google Scholar 

  5. Hafliger, P.: Adaptive WTA with an Analog VLSI Neuromorphic Learning Chip. IEEE Transactions on Neural Networks 18(2), 551–572 (2007)

    Article  Google Scholar 

  6. Indiveri, G., Chicca, E., Douglas, R.: A VLSI Array of Low-Power Spiking Neurons and Bistables Synapses with Spike-Timig Dependant Plasticity. IEEE Transactions on Neural Networks 17(1), 211–221 (2006)

    Article  Google Scholar 

  7. Cohen, A., et al.: Report to the National Science Foundation: Workshop on Neuromorphic Engineering, Telluride, Colorado, USA (June-July 2004), www.ini.unizh.ch/telluride

  8. CAN specification, www.semiconductors.bosch.de/pdf/can2spec.pdf

  9. Sivilotti, M.: Wiring Considerations in analog VLSI Systems with Application to Field-Programmable Networks. Ph.D. Thesis, California Institute of Technology, Pasadena CA (1991)

    Google Scholar 

  10. The 2011 Cognitive Neuromorphic Engineering Workshop, http://capocaccia.ethz.ch/capo/wiki/2011

  11. Jiménez-Fernández, A., Linares-Barranco, A., Paz-Vicente, R., Jimenez-Moreno, G., Berner, R.: Spike-Based Control Monitoring and Analysis With Address Event Representation. In: Proceeding of the AICCSA-2009, Rabat, Morocco, vol. 7, pp. 900–906 (2009)

    Google Scholar 

  12. Ziermann, T., Wildermann, S., Teich, J.: CAN+: A new backward-compatible Controller Area Network (CAN) protocol with up to 16× higher data rates. In: DATE 2009, pp. 1088–1093 (2009)

    Google Scholar 

  13. Linares-Barranco, A., Jiménez-Fernandez, A., Paz-Vicente, R., Varona, S., Jiménez, G.: An AER-based actuator interface for controlling an anthropomorphic robotic hand. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 479–489. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-Vicente, R., Gómez-Rodríguez, F., et al.: CAVIAR: A 45k-neuron, 5M-synapse AER Hardware Sensory-Processing-Learning-Actuating System for High-Speed Visual Object Recognition and Tracking. IEEE Trans. on Neural Networks 20(9), 1417–1438 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dominguez-Morales, M. et al. (2011). An AER to CAN Bridge for Spike-Based Robot Control. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21501-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21501-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21500-1

  • Online ISBN: 978-3-642-21501-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics