Abstract
Address-Event-Representation (AER) is a bio-inspired communication protocol between chips. A set of AER sensors (retina and cochleas), processors (convolvers, WTA, mappers, …) and actuators can be found in the literature that have been specifically designed for mimicking the communication principle in the brain: spikes. The problem when developing complex robots based on AER (or spikes) is to command actuators (motors) directly with spikes. Commercial robots are usually based on commercial standards (CAN) that do not allow powering actuators directly with spikes. This paper presents a co-design FPGA and embedded computer system that implements a bridge between these two protocols: CAN and AER. The bridge has been analyzed under the Spanish project VULCANO with an arm robot and a Shadow anthropomorphic hand.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lichtsteiner, P., Posh, C., Delbruck, T.: A 128×128 120dB 15 us Asynchronous Temporal Contrast Vision Sensor. IEEE Journal on Solid-State Circuits 43(2), 566–576 (2008)
Chan, V., Liu, S.C., van Schaik, A.: AER EAR: A Matched Silicon Cochlea Pair with Address-Event-Representation Interface. IEEE Trans. Circuits and Systems-I 54(1), 48–59 (2007)
Costas-Santos, J., Serrano-Gotarredona, T., Serrano-Gotarredona, R., Linares-Barranco, B.: A Spatial Contrast Retina with On-chip Calibration for Neuromorphic Spike-Based AER Vision Systems. IEEE Trans. Circuits and Systems-I 54(7), 1444–1458 (2007)
Serrano-Gotarredona, R., et al.: A Neuromorphic Cortical-Layer Microchip for Spike-Based Event Processing Vision Systems. IEEE T. Circuits Systems-I 53(12), 2548–2566 (2006)
Hafliger, P.: Adaptive WTA with an Analog VLSI Neuromorphic Learning Chip. IEEE Transactions on Neural Networks 18(2), 551–572 (2007)
Indiveri, G., Chicca, E., Douglas, R.: A VLSI Array of Low-Power Spiking Neurons and Bistables Synapses with Spike-Timig Dependant Plasticity. IEEE Transactions on Neural Networks 17(1), 211–221 (2006)
Cohen, A., et al.: Report to the National Science Foundation: Workshop on Neuromorphic Engineering, Telluride, Colorado, USA (June-July 2004), www.ini.unizh.ch/telluride
CAN specification, www.semiconductors.bosch.de/pdf/can2spec.pdf
Sivilotti, M.: Wiring Considerations in analog VLSI Systems with Application to Field-Programmable Networks. Ph.D. Thesis, California Institute of Technology, Pasadena CA (1991)
The 2011 Cognitive Neuromorphic Engineering Workshop, http://capocaccia.ethz.ch/capo/wiki/2011
Jiménez-Fernández, A., Linares-Barranco, A., Paz-Vicente, R., Jimenez-Moreno, G., Berner, R.: Spike-Based Control Monitoring and Analysis With Address Event Representation. In: Proceeding of the AICCSA-2009, Rabat, Morocco, vol. 7, pp. 900–906 (2009)
Ziermann, T., Wildermann, S., Teich, J.: CAN+: A new backward-compatible Controller Area Network (CAN) protocol with up to 16× higher data rates. In: DATE 2009, pp. 1088–1093 (2009)
Linares-Barranco, A., Jiménez-Fernandez, A., Paz-Vicente, R., Varona, S., Jiménez, G.: An AER-based actuator interface for controlling an anthropomorphic robotic hand. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 479–489. Springer, Heidelberg (2007)
Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-Vicente, R., Gómez-Rodríguez, F., et al.: CAVIAR: A 45k-neuron, 5M-synapse AER Hardware Sensory-Processing-Learning-Actuating System for High-Speed Visual Object Recognition and Tracking. IEEE Trans. on Neural Networks 20(9), 1417–1438 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dominguez-Morales, M. et al. (2011). An AER to CAN Bridge for Spike-Based Robot Control. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21501-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-21501-8_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21500-1
Online ISBN: 978-3-642-21501-8
eBook Packages: Computer ScienceComputer Science (R0)