Abstract
A nonlinear compartmental model is developed for the HIV detection system in Cuba with different types of detections, some random and others non-random. We analyze the dynamics of this system, compute the reproduction numbers, and use the data from the Cuban HIV/AIDS epidemic between 1986-2008 to fit the model. We obtain estimates for the detection-related parameters during two separate time periods to reflect the timeline of the implementation of various types of searches. The reproduction numbers for each time period are also computed from the sets of values of the parameters. We found that random screening is most important as a mean of surveillance. Moreover, local asymptotic stability for the Disease Free Equilibrium can be achieved if (i) random screening is sufficiently effective and (ii) infection by detected HIV-positive individuals is minimal. Our results highlight the importance of education for the known infectious for the purpose of preventing further infection. Fitting the 1986-2008 HIV data to obtain the model parameter estimates indicates that the HIV epidemic in Cuba is currently approaching an endemic equilibrium. A Genetic Algorithm is used.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Anderson, R.M., Gupta, S., May, R.M.: Potential of community-wide chemotherapy or immunotherapy to control the spread of HIV-1. Nature 350, 356–359 (1991)
de Arazoza, H., Lounes, R.: A non linear model for a sexually transmitted disease with contact tracing. IMA. J. Math. Appl. Med. Biol. 19, 221–234 (2002)
de Arazoza, H., Joanes, J., Lounes, R., Legeai, C., Clémençon, S., Pérez, J., Auvert, B.: The HIV/AIDS epidemic in Cuba: Description and tentative explanation of its low HIV prevalence. BMC Infectious Diseases 7:130, 1–6 (2007)
Granich, R.M., Gilks, C.F., Dye, C., De Cock, K.M., Williams, B.G.: Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet 373, 48–57 (2009)
Hsieh, Y.H., Cooke, K.: Behavior Change and Treatment of Core Group and Bridge Population: Its Effect on the Spread of HIV/AIDS. IMA J. of Math. Appl. Biol. Med. 17(3), 213–241 (2000)
Hsieh, Y.H., de Arazoza, H., Lounes, R., Joanes, J.: A Class of Models for HIV Contact Tracing in Cuba: Implications for Intervention and Treatment. In: Tan, W.Y. (ed.) Deterministic and Stochastic Models for AIDS Epidemics and HIV Infection with Interventions. World Scientific, Singapore (2005)
Hsieh, Y.H., de Arazoza, H.: Correspondence to ”Universal voluntary HIV testing and immediate antiretroviral therapy”. Lancet 373, 1079–1080 (2009)
Hsieh, Y.H., Wang, Y.S., de Arazoza, H., Lounes, R.: HIV Model with Secondary Contact Tracing: Impact of the Partner Notification Program in Cuba. BMC Infectious Diseases 10:194, 1–9 (2010)
Hsu, S.B., Hsieh, Y.H.: Modeling intervention measures and public response during SARS outbreak. SIAM J. Appl Math. 66(2), 627–647 (2006)
Inciardi, J.A., Syvertsen, J.L., Surratt, H.L.: HIV/AIDS in the Caribbean Basin. AIDS Care 17(suppl. 1), S9–S25 (2005)
WHO. World Health Organisation: Cuba, http://www.who.int/countries/cub/en/ (accessed June 20, 2006)
MINSAP. CUBA:PLAN ESTRATEGICO NACIONAL ITS/VIH/SIDA 2007-2011 (2006), http://www.sld.cu/galerias/pdf/servicios/sida/anexo_2,_plan_estrategico__2007-2011.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Arazoza, H., Lounes, R., Sánchez, A., Barrios, J., Hsieh, YH. (2011). Modeling Detection of HIV in Cuba. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21498-1_66
Download citation
DOI: https://doi.org/10.1007/978-3-642-21498-1_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21497-4
Online ISBN: 978-3-642-21498-1
eBook Packages: Computer ScienceComputer Science (R0)