Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Static Preprocess for Improving Fuzzy Thresholded Tabulation

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6692))

Included in the following conference series:

Abstract

Tabulation has been widely used in most (crisp) declarative paradigms for efficiently running programs without the redundant evaluation of goals. More recently, we have reinforced the original method in a fuzzy setting, by the dynamic generation of thresholds which avoid many useless computations leading to insignificant solutions. In this paper, we draw a static technique for generating such filters without requiring the consumption of extra computational resources at execution time.

Work supported by the Spanish MICINN projects TIN2009-14562-C05-01, TIN2009-14562-C05-03, TIN 2007-65749 and TIN2011-25846, and by the Andalucía and Castilla-La Mancha Administrations under grants P09-FQM-5233 and PII1I09-0117-4481.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alpuente, M., Falaschi, M., Moreno, G., Vidal, G.: Rules + Strategies for Transforming Lazy Functional Logic Programs. Theoretical Computer Science 311(1-3), 479–525 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril- Fuzzy and Evidential Reasoning in Artificial Intelligence. John Wiley & Sons, Inc., Chichester (1995)

    Google Scholar 

  3. Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive Programs. Journal of the ACM 24(1), 44–67 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Damásio, C.V., Medina, J., Ojeda-Aciego, M.: A tabulation proof procedure for residuated logic programming. In: Proc. of the European Conf. on Artificial Intelligence, Frontiers in Artificial Intelligence and Applications, vol. 110, pp. 808–812 (2004)

    Google Scholar 

  5. Ishizuka, M., Kanai, N.: Prolog-ELF Incorporating Fuzzy Logic. In: Joshi, A.K. (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI 1985), pp. 701–703. Morgan Kaufmann, San Francisco (1985)

    Google Scholar 

  6. Julián, P., Medina, J., Moreno, G., Ojeda, M.: Efficient thresholded tabulation for fuzzy query answering. Studies in Fuzziness and Soft Computing (Foundations of Reasoning under Uncertainty) 249, 125–141 (2010)

    Article  MATH  Google Scholar 

  7. Julián, P., Moreno, G., Penabad, J.: On Fuzzy Unfolding. A Multi-adjoint Approach. Fuzzy Sets and Systems 154, 16–33 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Julián, P., Moreno, G., Penabad, J.: Efficient reductants calculi using partial evaluation techniques with thresholding. Electronic Notes in Theoretical Computer Science 188, 77–90 (2007)

    Article  MATH  Google Scholar 

  9. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. Journal of Logic Programming 12, 335–367 (1992)

    Article  MathSciNet  Google Scholar 

  10. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Multi-adjoint logic programming with continuous semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 351–364. Springer, Heidelberg (2001)

    Google Scholar 

  11. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based Unification: a multi-adjoint approach. Fuzzy Sets and Systems 146, 43–62 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Morcillo, P.J., Moreno, G.: Programming with fuzzy logic rules by using the FLOPER tool. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS, vol. 5321, pp. 119–126. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Swift, T.: Tabling for non-monotonic programming. Annals of Mathematics and Artificial Intelligence 25(3-4), 201–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tamaki, H., Sato, T.: Unfold/Fold Transformations of Logic Programs. In: Tärnlund, S. (ed.) Proc. of Second Int’l Conf. on Logic Programming, pp. 127–139 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Julián, P., Medina, J., Morcillo, P.J., Moreno, G., Ojeda-Aciego, M. (2011). A Static Preprocess for Improving Fuzzy Thresholded Tabulation. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21498-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21498-1_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21497-4

  • Online ISBN: 978-3-642-21498-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics