Abstract
Graph orientation is a fundamental problem in graph theory that has recently arisen in the study of signaling-regulatory pathways in protein networks. Given a graph and a list of ordered source-target vertex pairs, it calls for assigning directions to the edges of the graph so as to maximize the number of pairs that admit a directed source-to-target path. When the input graph is undirected, a sub-logarithmic approximation is known for the problem. However, the approximability of the biologically-relevant variant, in which the input graph has both directed and undirected edges, was left open. Here we give the first approximation algorithm to this problem. Our algorithm provides a sub-linear guarantee in the general case, and logarithmic guarantees for structured instances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arkin, E.M., Hassin, R.: A note on orientations of mixed graphs. Discrete Applied Mathematics 116(3), 271–278 (2002)
Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM Journal on Discrete Mathematics 12(3), 289–297 (1999)
Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer, Heidelberg (2008)
Barabási, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nature Reviews Genetics 5(2), 101–113 (2004)
Boesch, F., Tindell, R.: Robbins’s theorem for mixed multigraphs. The American Mathematical Monthly 87(9), 716–719 (1980)
Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. Journal of Computer and System Sciences 74(7), 1188–1198 (2008)
Chung, F.R.K., Garey, M.R., Tarjan, R.E.: Strongly connected orientations of mixed multigraphs. Networks 15(4), 477–484 (1985)
Cohen, R., Havlin, S., ben-Avraham, D.: Structural properties of scale-free networks. In: Handbook of Graphs and Networks: From the Genome to the Internet. Wiley-VCH, Weinheim (2002)
Dorn, B., Hüffner, F., Krüger, D., Niedermeier, R., Uhlmann, J.: Exploiting bounded signal flow for graph orientation based on cause–effect pairs (To appear). In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 104–115. Springer, Heidelberg (2011)
Fields, S.: High-throughput two-hybrid analysis. The promise and the peril. The FEB Journal 272(21), 5391–5399 (2005)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
Frederickson, G.N., Johnson, D.B.: Generating and searching sets induced by networks. In: ICALP 1980. LNCS, vol. 85, pp. 221–233. Springer, Heidelberg (1980)
Gamzu, I., Segev, D., Sharan, R.: Improved orientations of physical networks. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 215–225. Springer, Heidelberg (2010)
Gavin, A., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.-M., Cruciat, C.-M., Remor, M., Höfert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.-A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga, G.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)
Hakimi, S.L., Schmeichel, E.F., Young, N.E.: Orienting graphs to optimize reachability. Information Processing Letters 63(5), 229–235 (1997)
Håstad, J.: Some optimal inapproximability results. Journal of the ACM 48(4), 798–859 (2001)
Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)
Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An algorithm for orienting graphs based on cause-effect pairs and its applications to orienting protein networks. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 222–232. Springer, Heidelberg (2008)
Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)
Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic control. The American Mathematical Monthly 46(5), 281–283 (1939)
Silverbush, D., Elberfeld, M., Sharan, R.: Optimally orienting physical networks. In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB 2011. LNCS, vol. 6577, pp. 424–436. Springer, Heidelberg (2011)
Tarjan, R.E.: A note on finding the bridges of a graph. Information Processing Letters 2(6), 160–161 (1974)
Yeang, C., Ideker, T., Jaakkola, T.: Physical network models. Journal of Computational Biology 11(2-3), 243–262 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Elberfeld, M., Segev, D., Davidson, C.R., Silverbush, D., Sharan, R. (2011). Approximation Algorithms for Orienting Mixed Graphs. In: Giancarlo, R., Manzini, G. (eds) Combinatorial Pattern Matching. CPM 2011. Lecture Notes in Computer Science, vol 6661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21458-5_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-21458-5_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21457-8
Online ISBN: 978-3-642-21458-5
eBook Packages: Computer ScienceComputer Science (R0)