Nothing Special   »   [go: up one dir, main page]

Skip to main content

Design of Emergent and Adaptive Virtual Players in a War RTS Game

  • Conference paper
Foundations on Natural and Artificial Computation (IWINAC 2011)

Abstract

Basically, in (one-player) war Real Time Strategy (wRTS) games a human player controls, in real time, an army consisting of a number of soldiers and her aim is to destroy the opponent’s assets where the opponent is a virtual (i.e., non-human player controlled) player that usually consists of a pre-programmed decision-making script. These scripts have usually associated some well-known problems (e.g., predictability, non-rationality, repetitive behaviors, and sensation of artificial stupidity among others). This paper describes a method for the automatic generation of virtual players that adapt to the player skills; this is done by building initially a model of the player behavior in real time during the game, and further evolving the virtual player via this model in-between two games. The paper also shows preliminary results obtained on a one-player wRTS game constructed specifically for experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lidén, L.: Artificial stupidity: The art of intentional mistakes. In: AI Game Programming Wisdom 2, pp. 41–48. Charles River Media, Inc. (2004)

    Google Scholar 

  2. Ahlquist, J.B., Novak, J.: Game Artificial Intelligence. Game Development essentials. Thomson Delmar Learning, Canada (2008)

    Google Scholar 

  3. Buro, M.: Call for AI research in RTS games. In: Fu, D., Orkin, J. (eds.) AAAI workshop on Challenges in Game AI, San Jose, pp. 139–141 (2004)

    Google Scholar 

  4. Corruble, V., Madeira, C.A.G., Ramalho, G.: Steps toward building of a good ai for complex wargame-type simulation games. In: Mehdi, Q.H., Gough, N.E. (eds.) 3rd International Conference on Intelligent Games and Simulation (GAME-ON 2002), London, UK (2002)

    Google Scholar 

  5. Forbus, K.D., Mahoney, J.V., Dill, K.: How qualitative spatial reasoning can improve strategy game ais. IEEE Intelligent Systems 17(4), 25–30 (2002)

    Article  Google Scholar 

  6. Louis, S.J., Miles, C.: Playing to learn: case-injected genetic algorithms for learning to play computer games. IEEE Trans. Evol. Comput. 9(6), 669–681 (2005)

    Article  Google Scholar 

  7. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the nero video game. IEEE Trans. Evol. Comput. 9(6), 653–668 (2005)

    Article  Google Scholar 

  8. Livingstone, D.: Coevolution in hierarchical ai for strategy games. In: IEEE Symposium on Computational Intelligence and Games (CIG 2005), Essex, UK, IEEE, Los Alamitos (2005)

    Google Scholar 

  9. Miles, C., Louis, S.J.: Co-evolving real-time strategy game playing influence map trees with genetic algorithms. In:International Congress on Evolutionary Computation, Portland, Oregon. IEEE press, New York (2006)

    Google Scholar 

  10. Lichocki, P., Krawiec, K., Jaśkowski, W.: Evolving teams of cooperating agents for real-time strategy game. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 333–342. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Beume, N.,et al.: Intelligent anti-grouping in real-time strategy games. In: International Symposium on Computational Intelligence in Games, Perth, Australia, pp. 63–70 (2008)

    Google Scholar 

  12. Keaveney, D., O’Riordan, C.: Evolving robust strategies for an abstract real-time strategy game. In: International Symposium on Computational Intelligence in Games, Milano. Italy, pp. 371–378. IEEE press, New York (2009)

    Google Scholar 

  13. Hagelbäck, J., Johansson, S.J.: A multi-agent potential field-based bot for a full RTS game scenario. In: Darken, C., Youngblood, G.M. (eds.) Proc. Fifth Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE 2009), Stanford, California, USA, The AAAI Press, Menlo Park (2009)

    Google Scholar 

  14. Sweetser, P.: Emergence in Games. Game development. Charles River Media, Boston (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García Gutiérrez, J.A., Cotta, C., Fernández Leiva, A.J. (2011). Design of Emergent and Adaptive Virtual Players in a War RTS Game. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) Foundations on Natural and Artificial Computation. IWINAC 2011. Lecture Notes in Computer Science, vol 6686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21344-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21344-1_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21343-4

  • Online ISBN: 978-3-642-21344-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics