Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Group Signature Scheme Based on the Integer Factorization and the Subgroup Discrete Logarithm Problems

  • Conference paper
Computational Intelligence in Security for Information Systems

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6694))

  • 1516 Accesses

Abstract

Group signature schemes allow a user, belonging to a specific group of users, to sign a message in an anonymous way on behalf of the group. In general, these schemes need the collaboration of a Trusted Third Party which, in case of a dispute, can reveal the identity of the real signer. A new group signature scheme is presented whose security is based on the Integer Factorization Problem (IFP) and on the Subgroup Discrete Logarithm Problem (SDLP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithm. IEEE Trans. Inform. Theory 31, 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of applied cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  3. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM 21, 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. National Institute of Standards and Technology: Secure Hash Standard (SHS). Federal Information Processing Standard Publication 180-2 (2002)

    Google Scholar 

  5. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  6. Chaum, D.: Showing credentials without identification. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 241–244. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  7. Ohta, K., Okamoto, T., Koyama, K.: Membership authentication for hierarchical multigroups using the extended fiat-shamir scheme. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 446–457. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  8. Shizuya, H., Koyama, S., Itoh, T.: Demonstrating possession without revelating factors and its applications. In: Seberry, J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 273–293. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  9. Bresson, E., Stern, J.: Efficient revocation in group signature. In: Kim, K.C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Camenish, J., Michels, M.: Separability and efficiency for generic group signature schemes (Extended abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Camenish, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  12. Ateniese, G., Camenish, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Ateniese, G., de Medeiros, B.: Efficient group signatures without trapdoors. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 246–268. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free group signature schemes from bilinear pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. J. Cryptology 15(2), 75–96 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Camenich, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenish, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Susilo, W.: Short fail-stop signature scheme based on factorization and discrete logarithm assumptions. Theor. Comput. Sci. 410, 736–744 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durán Díaz, R., Hernández Encinas, L., Muñoz Masqué, J. (2011). A Group Signature Scheme Based on the Integer Factorization and the Subgroup Discrete Logarithm Problems. In: Herrero, Á., Corchado, E. (eds) Computational Intelligence in Security for Information Systems. Lecture Notes in Computer Science, vol 6694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21323-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21323-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21322-9

  • Online ISBN: 978-3-642-21323-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics