Abstract
Group signature schemes allow a user, belonging to a specific group of users, to sign a message in an anonymous way on behalf of the group. In general, these schemes need the collaboration of a Trusted Third Party which, in case of a dispute, can reveal the identity of the real signer. A new group signature scheme is presented whose security is based on the Integer Factorization Problem (IFP) and on the Subgroup Discrete Logarithm Problem (SDLP).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithm. IEEE Trans. Inform. Theory 31, 469–472 (1985)
Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of applied cryptography. CRC Press, Boca Raton (1997)
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM 21, 120–126 (1978)
National Institute of Standards and Technology: Secure Hash Standard (SHS). Federal Information Processing Standard Publication 180-2 (2002)
Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)
Chaum, D.: Showing credentials without identification. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 241–244. Springer, Heidelberg (1986)
Ohta, K., Okamoto, T., Koyama, K.: Membership authentication for hierarchical multigroups using the extended fiat-shamir scheme. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 446–457. Springer, Heidelberg (1991)
Shizuya, H., Koyama, S., Itoh, T.: Demonstrating possession without revelating factors and its applications. In: Seberry, J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 273–293. Springer, Heidelberg (1990)
Bresson, E., Stern, J.: Efficient revocation in group signature. In: Kim, K.C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)
Camenish, J., Michels, M.: Separability and efficiency for generic group signature schemes (Extended abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430. Springer, Heidelberg (1999)
Camenish, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)
Ateniese, G., Camenish, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)
Ateniese, G., de Medeiros, B.: Efficient group signatures without trapdoors. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 246–268. Springer, Heidelberg (2003)
Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free group signature schemes from bilinear pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)
Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. J. Cryptology 15(2), 75–96 (2002)
Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)
Camenich, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)
Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenish, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)
Susilo, W.: Short fail-stop signature scheme based on factorization and discrete logarithm assumptions. Theor. Comput. Sci. 410, 736–744 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Durán Díaz, R., Hernández Encinas, L., Muñoz Masqué, J. (2011). A Group Signature Scheme Based on the Integer Factorization and the Subgroup Discrete Logarithm Problems. In: Herrero, Á., Corchado, E. (eds) Computational Intelligence in Security for Information Systems. Lecture Notes in Computer Science, vol 6694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21323-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-21323-6_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21322-9
Online ISBN: 978-3-642-21323-6
eBook Packages: Computer ScienceComputer Science (R0)