Nothing Special   »   [go: up one dir, main page]

Skip to main content

Bio-inspired Color Image Segmentation on the GPU (BioSPCIS)

  • Conference paper
New Challenges on Bioinspired Applications (IWINAC 2011)

Abstract

In this paper we introduce a neural architecture for multiple scale color image segmentation on a Graphics Processing Unit (GPU): the BioSPCIS (Bio-Inspired Stream Processing Color Image Segmentation) architecture. BioSPCIS has been designed according to the physiological organization of the cells on the mammalian visual system and psychophysical studies about the interaction of these cells for image segmentation. Quality of the segmentation was measured against hand-labelled segmentations from the Berkeley Segmentation Dataset. Using a stream processing model and hardware suitable for its execution, we are able to compute the activity of several neurons in the visual path system simultaneously. All the 100 test images in the Berkeley database can be processed in 5 minutes using this architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antón-Rodríguez, M., Díaz-Pernas, F.J., Díez-Higuera, J.F., Martínez-Zarzuela, M., González-Ortega, D., Boto-Giralda, D.: Recognition of coloured and textured images through a multi-scale neural architecture with orientational filtering and chromatic diffusion. Neurocomputing 72, 3713–3725 (2009)

    Article  Google Scholar 

  2. BSDS: The berkeley segmentation dataset and benchmark, http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/ (last visit July 2010)

  3. Carey, J.: Brain Facts: A primer on the brain and nervous system. The Society For Neuroscience (2006)

    Google Scholar 

  4. Díaz-Pernas, F.J., Antón-Rodríguez, M., Díez-Higuera, J.F., Martínez-Zarzuela, M., González-Ortega, D., Boto-Giralda, D.: Texture classification of the entire brodatz database through an orientational-invariant neural architecture. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009. LNCS, vol. 5602, pp. 294–303. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Díaz-Pernas, F., Antón-Rodríguez, M., Martínez-Zarzuela, M., Díez-Higuera, J.F., González-Ortega, D., Boto-Giralda, D.: Multiple scale neural architecture for enhancing regions in the colour image segmentation process. Expert Systems 28, 70–96 (in press)

    Google Scholar 

  6. Gobron, S., Devillard, F., Heit, B.: Retina simulation using cellular automata and gpu programming. Mach. Vision Appl. 18(6), 331–342 (2007)

    Article  Google Scholar 

  7. Hérault, J., Durette, B.: Modeling visual perception for image processing. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 662–675. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Hodgkin, A.: The Conduction of the Nerve Impulse. Springfield (1964)

    Google Scholar 

  9. Hubel, D., Wiesel, T.: Receptive fields and functional architecture of monkey striate cortex. J. Physiology 195(1), 215–243 (1968)

    Article  Google Scholar 

  10. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (July 2001)

    Google Scholar 

  11. Martínez-Zarzuela, M., Díaz-Pernas, F., Antón-Rodríguez, M., Díez-Higuera, J., González-Ortega, D., Boto-Giralda, D., López-González, F., De La Torre, I.: Multi-scale neural texture classification using the gpu as a stream processing engine. Mach. Vision Appl. (January 2010), http://dx.doi.org/10.1007/s00138-010-0254-3

  12. Martínez-Zarzuela, M., Pernas, F.D., Higuera, J.F.D., Antón-Rodríguez, M.: Fuzzy ART neural network parallel computing on the GPU. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 463–470. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Martínez-Zarzuela, M., Pernas, F.D., de Pablos, A.T., Antón-Rodríguez, M., Higuera, J.F.D., Boto-Giralda, D., Ortega, D.G.: Adaptative resonance theory fuzzy networks parallel computation using CUDA. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 149–156. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Mingolla, E., Ross, W., Grossberg, S.: A neural network for enhancing boundaries and surfaces in synthetic aperture radar images. Neural Networks 12, 499–511 (1999)

    Article  Google Scholar 

  15. Obermayer, K., Blasdel, G.G.: Geometry of orientation and ocular dominance columns in monkey striate cortex. Journal of Neuroscience 13, 4114–4129 (1993)

    Google Scholar 

  16. Owens, J., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., Purcell, T.: A survey of general-purpose computation on graphics hardware. Computer Graphics Forum. 26(1), 80–113 (2007), http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012x

    Article  Google Scholar 

  17. Rumpf, M., Strzodka, R.: Level set segmentation in graphics hardware. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2001), vol. 3, pp. 1103–1106 (2001)

    Google Scholar 

  18. Schwartz, S.: Visual Perception: a clinical orientation, 3rd edn. McGraw-Hill, New York (2004)

    Google Scholar 

  19. Viola, I., Kanitsar, A., Gruller, M.E.: Hardware-based nonlinear filtering and segmentation using high-level shading languages. IEEE Visualization, 309–316 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez-Zarzuela, M., Díaz-Pernas, F.J., Antón-Rodríguez, M., Perozo-Rondón, F., González-Ortega, D. (2011). Bio-inspired Color Image Segmentation on the GPU (BioSPCIS). In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) New Challenges on Bioinspired Applications. IWINAC 2011. Lecture Notes in Computer Science, vol 6687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21326-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21326-7_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21325-0

  • Online ISBN: 978-3-642-21326-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics