Nothing Special   »   [go: up one dir, main page]

Skip to main content

Study of Strength Tests with Computer Vision Techniques

  • Conference paper
New Challenges on Bioinspired Applications (IWINAC 2011)

Abstract

Knowing the strain response of materials in strength tests is one of the main issues in construction and engineering fields. In these tests, information about displacements and strains is usually carried out using physical devices attached to the material.

In this paper, the suitability of Computer Vision techniques to analyse strength tests without interfering with the assay is discussed and a new technique is proposed.

This technique measures displacements and deformations from a video sequence of the assay.

With this purpose a Block-Matching Optical Flow algorithm is integrated with a calibration process to extract the vectorfield from the displacement in the material.

To evaluate the proposed technique, a synthetic image set and a real sequence from a strength tests were analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abad, F.H., Abad, V.H., Andreu, J.F., Vives, M.O.: Application of Projective Geometry to Synthetic Cameras. In: XIV International Conference of Graphic Engineering (2002)

    Google Scholar 

  2. Amiaz, T., Lubetzky, E., Kiryati, N.: Coarse to over-fine optical flow estimation. Pattern Recognition 40(9), 1503–2494 (2007)

    Article  MATH  Google Scholar 

  3. Austvoll, I.: A Study of the Yosemite Sequence Used as a Test Sequence for Estimation of Optical Flow. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 659–668. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Chin, R.T., Harlow, C.A.: Automated visual ispection. IEEE Transactios on Pattern Analysis ad Machine Intelligence 4(6) (1982)

    Google Scholar 

  5. Chivers, K., Clocksin, W.: Inspection of Surface Strain in Materials Using Optical Flow. In: British Machine Vision Conference 2000, pp. 392–401 (2000)

    Google Scholar 

  6. Deng, Z., Richmond, M.C., Guensch, G.R., Mueller, R.P.: Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging. Technical Report. PNNL-14819 (2004)

    Google Scholar 

  7. Graphics and Vision Research Laboratory, Department of Computer Science, University of Otago, http://www.cs.otago.ac.nz (accessed November 2010)

  8. Heeger, D.: Model for the extraction of image flow. Journal of the Optical Society of America A: Optics, Image Science, and Vision 4, 1455–1471 (1987)

    Article  Google Scholar 

  9. Horn, B.K.P., Schunk, B.G.: Determining Optical Flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  10. Kadem, L.: Particle Image Velocimetry for Fluid Dynamics Measurements. Applied Cardiovascular Fluid Dynamics (Concordia University), Particle Image Velocimetry (2008)

    Google Scholar 

  11. Malsch, U., Thieke, C., Huber, P.E., Bendl, R.: An enhanced block matching algorithm for fast elastic registration in adaptive radiotherapy. Phys. Med. Biol. 51, 4789–4806 (2006)

    Article  Google Scholar 

  12. Manchado, A.R.: Calibracion de camaras no metricas por el metodo de las lineas rectas. Mapping 51, 74–80 (1999)

    Google Scholar 

  13. Martin, N., Perez, B.A., Aguilera, D.G., Lahoz, J.G.: Applied Analysis of Camera Calibration Methods for Photometric Uses. In: VII National Conference of Topography and Cartography (2004)

    Google Scholar 

  14. McCane, B., Novins, K., Crannitch, D., Galvin, B.: On Benchmarking Optical Flow. Computer Vision and Image Understanding 84, 126–143 (2001)

    Article  MATH  Google Scholar 

  15. Open Source Computer Vision, http://opencv.willowgarage.com (accessed November 2010)

  16. Particle image Velocimetry, http://www.piv.de (accessed November 2010)

  17. Raffel, M., Willert, C., Kompenhans, J.: Particle Image Velocimetry, a Practical Guide. Springer, Berlin (2000)

    Google Scholar 

  18. Raffel, M., Willert, C., Kompenhans, J.: Particle Image Velocimetry, a Practical Guide, 2nd edn. Springer, Berlin (2007)

    Google Scholar 

  19. Scharstein, D., Baker, S., Lewis, J.P.: A database and evaluation methodology for Optical Flow. In: ICCV (2007)

    Google Scholar 

  20. Schwarz, D., Kasparek, T.: Multilevel Block Matching technique with the use of Generalized Partial Interpolation for Nonlinear Intersubject Registration of MRI Brain Images. European Journal for Biomedical Informatics 1, 90–97 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodriguez, A., Rabuñal, J.R., Perez, J.L., Martinez-Abella, F. (2011). Study of Strength Tests with Computer Vision Techniques. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) New Challenges on Bioinspired Applications. IWINAC 2011. Lecture Notes in Computer Science, vol 6687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21326-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21326-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21325-0

  • Online ISBN: 978-3-642-21326-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics