Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Fuzzy Cognitive Maps Modeling, Learning and Simulation Framework for Studying Complex System

  • Conference paper
New Challenges on Bioinspired Applications (IWINAC 2011)

Abstract

This paper presents Fuzzy Cognitive Maps as an approach in modeling the behavior and operation of complex systems; they combine aspects of fuzzy logic, neural networks, semantic networks, expert systems, and nonlinear dynamical systems. They are fuzzy weighted directed graphs with feedback that create models that emulate the behavior of complex decision processes using fuzzy causal relations. First, the description and the methodology that this theory suggests is examined, later some ideas for using this approach in the control process area are discussed. An inspired on particle swarm optimization learning method for this technique is proposed, and then, the implementation of a tool based on Fuzzy Cognitive Maps is described. The application of this theory might contribute to the progress of more intelligent and independent systems. Fuzzy Cognitive Maps have been fruitfully used in decision making and simulation of complex situation and analysis. At the end, a case study about Travel Behavior is analyzed and results are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kosko, B.: Neural Networks and Fuzzy systems, a dynamic system approach to machine intelligence, p. 244. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  2. Parpola, P.: Inference in the SOOKAT object-oriented knowledge acquisition tool. Knowledge and Information Systems (2005)

    Google Scholar 

  3. Kosko, B.: Fuzzy Cognitive Maps. International Journal of Man-Machine Studies 24, 65–75 (1986)

    Article  MATH  Google Scholar 

  4. Koulouritios, D.: Efficiently Modeling and Controlling Complex Dynamic Systems using Evolutionary Fuzzy Cognitive Maps. International Journal of Computational Cognition 1, 41–65 (2003)

    Google Scholar 

  5. Wei, Z.: Using fuzzy cognitive time maps for modeling and evaluating trust dynamics in the virtual enterprises. Expert Systems with Applications, 1583–1592 (2008)

    Google Scholar 

  6. Xirogiannis, G.: Fuzzy Cognitive Maps as a Back End to Knowledge-based Systems in Geographically Dispersed Financial Organizations. Knowledge and Process Management 11, 137–154 (2004)

    Article  Google Scholar 

  7. Aguilar, J.: A Dynamic Fuzzy-Cognitive-Map Approach Based on Random Neural Networks. Journal of Computational Cognition 1, 91–107 (2003)

    Google Scholar 

  8. Li, X.: Dynamic Knowledge Inference and Learning under Adaptive Fuzzy Petri Net Framework. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and reviews (2000)

    Google Scholar 

  9. Castillo, E.: Expert Systems and Probabilistic Network Models. Springer, Heidelberg (2003)

    Google Scholar 

  10. Intan, R.: Fuzzy conditional probability relations and their applications in fuzzy information systems. Knowledge and Information Systems (2004)

    Google Scholar 

  11. Carlsson, C.: Adaptive Fuzzy Cognitive Maps for Hyperknowledge Representation in Strategy Formation Process. In: IAMSR, Abo Akademi University (2005)

    Google Scholar 

  12. Stylios, C.: Modeling Complex Systems Using Fuzzy Cognitive Maps. IEEE Transactions on Systems, Man and Cybernetics 34, 155–162 (2004)

    Article  Google Scholar 

  13. Mcmichael, J.: Optimizing Fuzzy Cognitive Maps with a Genetic Algorithm AIAA 1\(^{\text{st}}\)Intelligent Systems Technical Conference. Chicago, Illinois (2004)

    Google Scholar 

  14. Mohr, S.: Software Design for a Fuzzy Cognitive Map Modeling Tool. Tensselaer Polytechnic Institute (1997)

    Google Scholar 

  15. Contreras, J.: Aplicación de Mapas Cognitivos Difusos Dinámicos a tareas de supervisión y control. Trabajo Final de Grado. Universidad de los Andes. Mérida, Venezuela (2005)

    Google Scholar 

  16. Tsadiras, A.: A New Balance Degree for Fuzzy Cognitive Maps. Technical Report. Department of Applied Informatics. University of Macedonia (2007)

    Google Scholar 

  17. Gutiérrez, J.: Análisis de los efectos de las infraestructuras de transporte sobre la accesibilidad y la cohesión regional. Estudios de Construcción y Transportes. Ministerio de Fomento. España (2006)

    Google Scholar 

  18. Wu, Q.: Multiknowledge for decision making. Knowledge and Information Systems (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

León, M., Nápoles, G., Rodriguez, C., García, M.M., Bello, R., Vanhoof, K. (2011). A Fuzzy Cognitive Maps Modeling, Learning and Simulation Framework for Studying Complex System. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) New Challenges on Bioinspired Applications. IWINAC 2011. Lecture Notes in Computer Science, vol 6687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21326-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21326-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21325-0

  • Online ISBN: 978-3-642-21326-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics