Nothing Special   »   [go: up one dir, main page]

Skip to main content

Climbing Depth-Bounded Adjacent Discrepancy Search for Solving Hybrid Flow Shop Scheduling Problems with Multiprocessor Tasks

  • Conference paper
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2011)

Abstract

This paper considers multiprocessor task scheduling in a multistage hybrid flow-shop environment. The problem even in its simplest form is NP-hard in the strong sense. The great deal of interest for this problem, besides its theoretical complexity, is animated by needs of various manufacturing and computing systems. We propose a new approach based on limited discrepancy search to solve the problem. Our method is tested with reference to a proposed lower bound as well as the best-known solutions in literature. Computational results show that the developed approach is efficient in particular for large-size problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beck, J.C., Perron, L.: Discrepancy-bounded depth first search. In: Proceedings of CPAIOR 2000, pp. 8–10 (2000)

    Google Scholar 

  2. Ben Hmida, A., Haouari, M., Huguet, M.-J., Lopez, P.: Solving two-stage hybrid flow shop using climbing depth-bounded discrepancy search. Computers and Industrial Engineering 60(2), 320–327 (2010)

    Article  Google Scholar 

  3. Ben Hmida, A., Huguet, M.-J., Lopez, P., Haouari, M.: Climbing depth-bounded discrepancy search for solving hybrid flow shop scheduling problems. European Journal of Industrial Engineering 1(2), 223–243 (2007)

    Article  Google Scholar 

  4. Bertel, S., Billaut, J.-C.: A genetic algorithm for an industrial multiprocessor flow shop scheduling problem with recirculation. European Journal of Operational Research 159(3), 651–662 (2004)

    Article  MathSciNet  Google Scholar 

  5. Brooks, G., White, C.: An algorithm for finding optimal or near optimal solutions to the production scheduling problem. Journal of Industrial Engineering 16, 34–40 (1965)

    Google Scholar 

  6. Chen, J., Lee, C.-Y.: General multiprocessor task scheduling. Naval Research Logistics 46, 57–74 (1999)

    Article  MathSciNet  Google Scholar 

  7. Dongarra, J.: Performance of various computers using standard linear equations software. Technical report, University of Tennessee (2009)

    Google Scholar 

  8. Ercan, M.F., Fung, Y.-F.: Real-time image interpretation on a multi-layer architecture. In: Proceedings of IEEE TENCON 1999, pp. 1303–1306 (1999)

    Google Scholar 

  9. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98, 23–47 (2003)

    Article  MathSciNet  Google Scholar 

  10. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), Montréal, Québec, Canada, vol. 1, pp. 607–615 (August 1995)

    Google Scholar 

  11. Jouglet, A., Oğuz, C., Sevaux, M.: Hybrid flow-shop: a memetic algorithm using constraint-based scheduling for efficient search. Journal of Mathematical Modelling and Algorithms 8, 271–292 (2009)

    Article  Google Scholar 

  12. Kelley Jr, J.E.: The critical-path method: Resources planning and scheduling. In: Thompson, G.L., Muth, J.F. (eds.) Industrial Scheduling, pp. 347–365. Prentice-Hall, Englewood Cliffs (1963)

    Google Scholar 

  13. Kiziltan, Z., Lodi, A., Milano, M., Parisini, F.: CP-based local branching. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 847–855. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Korf, R.E.: Improved limited discrepancy search. In: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI 1996), Portland, OR, vol. 1, pp. 286–291 (August 1996)

    Google Scholar 

  15. Milano, M., Roli, A.: On the relation between complete and incomplete search: an informal discussion. In: Proceedings of CPAIOR 2002, Le Croisic, France, pp. 237–250 (2002)

    Google Scholar 

  16. Oğuz, C., Ercan, M.F.: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks. Journal of Scheduling 8, 323–351 (2005)

    Article  MathSciNet  Google Scholar 

  17. Oğuz, C., Fung, Y.-F., Ercan, M.F., Qi, X.-T.: Parallel genetic algorithm for a flow shop problem with multiprocessor tasks. In: International Conference on Computational Science, Berlin, Heidelberg, pp. 548–559 (2003)

    Google Scholar 

  18. Oğuz, C., Zinder, Y., Ha Do, V., Janiak, A., Lichtenstein, M.: Hybrid flow shop scheduling problems with multiprocessor task systems. European Journal of Operational Research 152, 115–133 (2004)

    Article  MathSciNet  Google Scholar 

  19. Prosser, P., Unsworth, C.: LDS: testing the hypothesis. Technical Report DCS TR-2008-273, Dept of Computing Science, University of Glasgow (2008)

    Google Scholar 

  20. Şerifoğlu, F.S., Ulusoy, G.: Multiprocessor task scheduling in multistage hybrid flow-shops: A genetic algorithm approach. European Journal of Operational Research 55(5), 504–512 (2004)

    Article  Google Scholar 

  21. Şerifoğlu, F.S., Ulusoy, G.: Multiprocessor task scheduling in multistage hybrid flow-shops: An ant colony system approach. International Journal of Production Research 44(16), 3161–3177 (2006)

    Article  Google Scholar 

  22. Sprecher, A., Kolisch, R., Drexl, A.: Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem. European Journal of Operational Research 80(1), 94–102 (1995)

    Article  Google Scholar 

  23. Walsh, T.: Depth-bounded discrepancy search. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI 1997), Nagoya, Japan, vol. 2, pp. 1388–1395 (August 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lahimer, A., Lopez, P., Haouari, M. (2011). Climbing Depth-Bounded Adjacent Discrepancy Search for Solving Hybrid Flow Shop Scheduling Problems with Multiprocessor Tasks. In: Achterberg, T., Beck, J.C. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2011. Lecture Notes in Computer Science, vol 6697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21311-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21311-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21310-6

  • Online ISBN: 978-3-642-21311-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics