Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Approach for Auto-organizing a Groups of Artificial Ants

  • Conference paper
Advances in Artificial Life. Darwin Meets von Neumann (ECAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5778))

Included in the following conference series:

  • 1752 Accesses

Abstract

We present in this paper a new combined clustering algorithm based on two biomimetic models : artificial ants and self-organizing map (SOM). We describe the main principles of our method that aims at auto-organizing a group of homogeneous ants (data’s). We show how these principles can be applied to the problem of data clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  2. Kohonen, T.: Self-organizing Maps. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  3. Goss, S., Deneubourg, J.-L.: Harvesting by a group of robots. In: Varela, F., Bourgine, P. (eds.) Proceedings of the First European Conference on Artificial Life, Paris, France, pp. 195–204. Elsevier Publishing, Amsterdam (1991)

    Google Scholar 

  4. Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Cliff, D., Husbands, P., Meyer, J.A., Stewart, W. (eds.) Proceedings of the Third International Conference on Simulation of Adaptive Behavior, pp. 501–508. MIT Press, Cambridge (1994)

    Google Scholar 

  5. Anderson, C., Theraulaz, G., Deneubourg, J.L.: Self-assemblages in insect societies. Insectes Sociaux 49, 99–110 (2002)

    Article  Google Scholar 

  6. Lioni, A., Sauwens, C., Theraulaz, G., Deneubourg, J.-L.: The dynamics of chain formation in oecophylla longinoda. Journal of Insect Behavior 14, 679–696 (2001)

    Article  Google Scholar 

  7. Theraulaz, G., Bonabeau, E., Sauwens, C., Deneubourg, J.-L., Lioni, A., Libert, F., Passera, L., Solé, R.-V.: Model of droplet formation and dynamics in the argentine ant (linepithema humile mayr). Bulletin of Mathematical Biology (2001)

    Google Scholar 

  8. Azzag, H., Guinot, C., Venturini, G.: Data and text mining with hierarchical clustering ants. Swarm Intelligence in Data Mining, 153–189 (2006)

    Google Scholar 

  9. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. advanced reference series:Computer Science (1988)

    Google Scholar 

  10. Blake, C.L., Merz, C.L.: Uci repository of machine learning databases. Technical report, University of California, Department of information and Computer science, Irvine, CA (1998), ftp://ftp.ics.uci.edu/pub/machine-learning-databases

  11. Ultsch, A.: Clustering with SOM: U*C. In: Proc. Workshop on Self-Organizing Maps, Paris, France, pp. 75–82 (2005), http://www.uni-marburg.de/fb12/datenbionik/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Azzag, H., Lebbah, M. (2011). A New Approach for Auto-organizing a Groups of Artificial Ants. In: Kampis, G., Karsai, I., Szathmáry, E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science(), vol 5778. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21314-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21314-4_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21313-7

  • Online ISBN: 978-3-642-21314-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics