Abstract
We present in this paper a new combined clustering algorithm based on two biomimetic models : artificial ants and self-organizing map (SOM). We describe the main principles of our method that aims at auto-organizing a group of homogeneous ants (data’s). We show how these principles can be applied to the problem of data clustering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)
Kohonen, T.: Self-organizing Maps. Springer, Berlin (2001)
Goss, S., Deneubourg, J.-L.: Harvesting by a group of robots. In: Varela, F., Bourgine, P. (eds.) Proceedings of the First European Conference on Artificial Life, Paris, France, pp. 195–204. Elsevier Publishing, Amsterdam (1991)
Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Cliff, D., Husbands, P., Meyer, J.A., Stewart, W. (eds.) Proceedings of the Third International Conference on Simulation of Adaptive Behavior, pp. 501–508. MIT Press, Cambridge (1994)
Anderson, C., Theraulaz, G., Deneubourg, J.L.: Self-assemblages in insect societies. Insectes Sociaux 49, 99–110 (2002)
Lioni, A., Sauwens, C., Theraulaz, G., Deneubourg, J.-L.: The dynamics of chain formation in oecophylla longinoda. Journal of Insect Behavior 14, 679–696 (2001)
Theraulaz, G., Bonabeau, E., Sauwens, C., Deneubourg, J.-L., Lioni, A., Libert, F., Passera, L., Solé, R.-V.: Model of droplet formation and dynamics in the argentine ant (linepithema humile mayr). Bulletin of Mathematical Biology (2001)
Azzag, H., Guinot, C., Venturini, G.: Data and text mining with hierarchical clustering ants. Swarm Intelligence in Data Mining, 153–189 (2006)
Jain, A.K., Dubes, R.C.: Algorithms for clustering data. advanced reference series:Computer Science (1988)
Blake, C.L., Merz, C.L.: Uci repository of machine learning databases. Technical report, University of California, Department of information and Computer science, Irvine, CA (1998), ftp://ftp.ics.uci.edu/pub/machine-learning-databases
Ultsch, A.: Clustering with SOM: U*C. In: Proc. Workshop on Self-Organizing Maps, Paris, France, pp. 75–82 (2005), http://www.uni-marburg.de/fb12/datenbionik/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Azzag, H., Lebbah, M. (2011). A New Approach for Auto-organizing a Groups of Artificial Ants. In: Kampis, G., Karsai, I., Szathmáry, E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science(), vol 5778. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21314-4_55
Download citation
DOI: https://doi.org/10.1007/978-3-642-21314-4_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21313-7
Online ISBN: 978-3-642-21314-4
eBook Packages: Computer ScienceComputer Science (R0)