Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5777))

Included in the following conference series:

Abstract

Bacteria offer an evolutionary model in which rich interactions between phenotype and genotype lead to compact genomes with efficient metabolic pathways. We seek an analogous computational process that supports a rich artificial heredity. These systems can be simulated by stochastic chemistry models, but there is currently no scope for open-ended evolution of the molecular species that make up the models. Instruction-set based Artifical Life has appropriate evolutionary properties, but the individual is represented as a single executing sequence with little additional physiology. We describe a novel combination of stochastic chemistries and evolvable molecule microprograms that gives a rich evolutionary framework. A single organism is represented by a set of exectuing sequences. Key to this approach is the use of inexact sequence matching for binding between individual molecules and for branching of molecular microprograms. We illustrate the approach by implementation of two steady-state replicase RNA analogues that demonstrate “invasion when rare”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bentley, P.J.: Fractal proteins. Genetic Programming and Evolvable Machines, 71–101 (March 2004)

    Google Scholar 

  2. Knibbe, C., Fayard, J.M., Beslon, G.: The topology of the protein network influences the dynamics of gene order: From systems biology to a systemic understanding of evolution. Artif. Life 14(1), 149–156 (2008)

    Article  Google Scholar 

  3. Hickinbotham, S., Clark, E., Stepney, S., Clarke, T., Young, P.: Gene regulation in a particle metabolome. In: CEC 2009, pp. 3024–3031. IEEE Press, Los Alamitos (2009)

    Google Scholar 

  4. Clark, E., Hickinbotham, S., Stepney, S., Clarke, T., Young, P.: Encoding evolvable molecules. In: International Workshop on Information Processing in Cells and Tissues (IPCAT), Franscini Ascona, Switzerland, Librix (2009)

    Google Scholar 

  5. Pennock, R.T.: Models, simulations, instantiations, and evidence: the case of digital evolution. J. Exp. Theor. Artif. Intell. 19(1), 29–42 (2007)

    Article  Google Scholar 

  6. Ray, T., Xu, C.: Measures of evolvability in Tierra. Artificial Life and Robotics 5(4), 211–214 (2001)

    Article  Google Scholar 

  7. Bobrik, M., Kvasnicka, V., Pospichal, J.: Artificial chemistry and molecular Darwinian evolution of DNA/RNA-like systems I – typogenetics and chemostat. In: Kelemen, A., Abraham, A., Liang, Y. (eds.) Computational Intelligence in Medical Informatics. SCI, vol. 85, pp. 295–336. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Danchin, A.: Bacteria as computers making computers. FEMS Microbiology Reviews 33(1), 3–26 (2009)

    Article  Google Scholar 

  9. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)

    Article  Google Scholar 

  10. Stepney, S., Clarke, T., Young, P.: Plazzmid: An evolutionary agent-based architecture inspired by bacteria and bees. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1151–1160. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Andrews, P.S., Sampson, A.T., Polack, F., Stepney, S., Timmis., J.: CoSMoS development lifecycle, version 0. Technical Report (in preparation), University of York (2008)

    Google Scholar 

  12. Garnett, P., Stepney, S., Leyser, O.: Towards an executable model of auxin transport canalisation. In: Stepney, S., Polack, F., Welch, P. (eds.) CoSMoS, pp. 63–91. Luniver Press (2008)

    Google Scholar 

  13. Hickinbotham, S., Clark, E., Nellis, A., Pay, M., Stepney, S., Clarke, T., Young, P.: An abstract metabolism of molecular microprograms. Technical Report (in preparation), University of York (June 2009)

    Google Scholar 

  14. Lincoln, T.A., Joyce, G.F.: Self-sustained replication of an RNA enzyme. Science, 1167856+ (January 2009)

    Google Scholar 

  15. Mills, D., Peterson, R., Spiegelman, S.: An extracellular darwinian experiment with a self-duplicating nucleic acid molecule. Proceedings of the National Academy of Sciences of the United States of America 58(1), 217–224 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hickinbotham, S. et al. (2011). Molecular Microprograms. In: Kampis, G., Karsai, I., Szathmáry, E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science(), vol 5777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21283-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21283-3_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21282-6

  • Online ISBN: 978-3-642-21283-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics