Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6638))

Abstract

We propose Mutation Systems as a model of the evolution of a string subject to the effects of mutations and a fitness function. One fundamental question about such a system is whether knowing the rules for mutations and fitness, we can predict whether it is possible for one string to evolve into another. To explore this issue we define a specific kind of mutation system with point mutations and a fitness function based on conserved strongly k-testable string patterns. We show that for k ≥ 2, such systems can simulate computation by both finite state machines and asynchronous cellular automata. The cellular automaton simulation shows that in this framework, universal computation is possible and the question of whether one string can evolve into another is undecidable. We also analyze the efficiency of the finite state machine simulation assuming random point mutations.

Research supported by the National Science Foundation under Grant CCF-0916389.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bennett, C.: Logical reversibility of computation. IBM J. Res. Develop., 525–532 (November 1973)

    Google Scholar 

  2. Bennett, C.H.: The thermodynamics of computation – a review. International Journal of Theoretical Physics 21, 905–940 (1982)

    Article  Google Scholar 

  3. Brzozowski, J., Simon, I.: Characterizations of locally testable events. Discrete Mathematics 4, 243–271 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. García, P., Vidal, E.: Inference of k-testable languages in the strict sense and application to syntactic pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 12, 920–925 (1990)

    Article  Google Scholar 

  5. Head, T.: Splicing representations of strictly locally testable languages. Discrete Appl. Math. 87, 139–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kari, J.: Theory of cellular automata: A survey. Theoretical Computer Science 334(1-3), 3–33 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kim, S.M., McNaughton, R., McCloskey, R.: A polynomial time algorithm for the local testability problem of deterministic finite automata. Algorithms and Data Structures 382, 420–436 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kobayashi, S., Yokomori, T.: Learning concatenations of locally testable languages from positive data. In: Arikawa, S., Jantke, K. (eds.) AII 1994 and ALT 1994. LNCS, vol. 872, pp. 407–422. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  9. Lindgren, K., Nordahl, M.: Universal computation in simple one-dimensional cellular automata. Complex Systems 4, 299–318 (1990)

    MathSciNet  MATH  Google Scholar 

  10. McNaughton, R.: Algebraic decision procedures for local testability. Theory of Computing Systems 8(1), 60–76 (1974)

    MathSciNet  MATH  Google Scholar 

  11. Valiant, L.G.: Evolvability. J. ACM 56, 3:1–3:21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Von Neumann, J.: Theory of self-reproducing automata. In: Burks, A.W. (ed.), University of Illinois Press, Urbana (1966)

    Google Scholar 

  13. Yokomori, T., Kobayashi, S.: Learning local languages and their application to DNA sequence analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1067–1079 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angluin, D., Aspnes, J., Barbosa Vargas, R. (2011). Mutation Systems. In: Dediu, AH., Inenaga, S., Martín-Vide, C. (eds) Language and Automata Theory and Applications. LATA 2011. Lecture Notes in Computer Science, vol 6638. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21254-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21254-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21253-6

  • Online ISBN: 978-3-642-21254-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics