Nothing Special   »   [go: up one dir, main page]

Skip to main content

JCLEC Meets WEKA!

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6678))

Included in the following conference series:

  • 1839 Accesses

Abstract

WEKA has recently become a very referenced DM tool. In spite of all the functionality it provides, it does not include any framework for the development of evolutionary algorithms. An evolutionary computation framework is JCLEC, which has been successfully employed for developing several EAs. The combination of both may lead in a mutual benefit. Thus, this paper proposes an intermediate layer to connect WEKA with JCLEC. It also presents a study case which samples the process of including a JCLEC’s EA into WEKA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F.: KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft. Computing 13, 307–318 (2008)

    Article  Google Scholar 

  2. Cano, A., Zafra, A., Ventura, S.: Solving classification problems using genetic programming algorithms on gPUs. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS, vol. 6077, pp. 17–26. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Chen, M.-S.H.J.Y.P.S.: Data mining: An overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering 8(6), 866–883 (1996)

    Article  Google Scholar 

  4. Corcoran, A.L., Sen, S.: Using real-valued genetic algorithms to evolve rule sets for classification. In: Proceedings of 1st IEEE Conference on Evolutionary Computation, pp. 120–124 (1994)

    Google Scholar 

  5. De Falco, I., Della Cioppa, A., Tarantino, E.: Discovering interesting classification rules with genetic programming. Applied Soft. Computing 1(4), 257–269 (2001)

    Article  Google Scholar 

  6. Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer-Verlag New York, Inc., Secaucus (2002)

    Book  MATH  Google Scholar 

  7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

    Article  Google Scholar 

  8. Luna, J.M., Romero, J.R., Ventura, S.: Analysis of the effectiveness of G3PARM algorithm. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS, vol. 6077, pp. 27–34. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner. In: Data Analysis, Machine Learning and Applications, ch. 38, pp. 319–326. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid prototyping for complex data mining tasks. In: Ungar, L., Craven, M., Gunopulos, D., Eliassi-Rad, T. (eds.) KDD 2006: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 935–940. ACM, New York (2006)

    Google Scholar 

  11. Tan, K.C., Tay, A., Lee, T.H., Heng, C.M.: Mining multiple comprehensible classification rules using genetic programming. In: Proceedings of the 2002 Congress Evolutionary Computation. CEC 2002, pp. 1302–1307. IEEE Computer Society, Washington, DC, USA (2002)

    Google Scholar 

  12. Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: JCLEC: a Java framework for evolutionary computation. Soft. Computing 12, 381–392 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cano, A., Luna, J.M., Olmo, J.L., Ventura, S. (2011). JCLEC Meets WEKA!. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science(), vol 6678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21219-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21219-2_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21218-5

  • Online ISBN: 978-3-642-21219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics