Abstract
WEKA has recently become a very referenced DM tool. In spite of all the functionality it provides, it does not include any framework for the development of evolutionary algorithms. An evolutionary computation framework is JCLEC, which has been successfully employed for developing several EAs. The combination of both may lead in a mutual benefit. Thus, this paper proposes an intermediate layer to connect WEKA with JCLEC. It also presents a study case which samples the process of including a JCLEC’s EA into WEKA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F.: KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft. Computing 13, 307–318 (2008)
Cano, A., Zafra, A., Ventura, S.: Solving classification problems using genetic programming algorithms on gPUs. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS, vol. 6077, pp. 17–26. Springer, Heidelberg (2010)
Chen, M.-S.H.J.Y.P.S.: Data mining: An overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering 8(6), 866–883 (1996)
Corcoran, A.L., Sen, S.: Using real-valued genetic algorithms to evolve rule sets for classification. In: Proceedings of 1st IEEE Conference on Evolutionary Computation, pp. 120–124 (1994)
De Falco, I., Della Cioppa, A., Tarantino, E.: Discovering interesting classification rules with genetic programming. Applied Soft. Computing 1(4), 257–269 (2001)
Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer-Verlag New York, Inc., Secaucus (2002)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)
Luna, J.M., Romero, J.R., Ventura, S.: Analysis of the effectiveness of G3PARM algorithm. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS, vol. 6077, pp. 27–34. Springer, Heidelberg (2010)
Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner. In: Data Analysis, Machine Learning and Applications, ch. 38, pp. 319–326. Springer, Heidelberg (2008)
Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid prototyping for complex data mining tasks. In: Ungar, L., Craven, M., Gunopulos, D., Eliassi-Rad, T. (eds.) KDD 2006: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 935–940. ACM, New York (2006)
Tan, K.C., Tay, A., Lee, T.H., Heng, C.M.: Mining multiple comprehensible classification rules using genetic programming. In: Proceedings of the 2002 Congress Evolutionary Computation. CEC 2002, pp. 1302–1307. IEEE Computer Society, Washington, DC, USA (2002)
Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: JCLEC: a Java framework for evolutionary computation. Soft. Computing 12, 381–392 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cano, A., Luna, J.M., Olmo, J.L., Ventura, S. (2011). JCLEC Meets WEKA!. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science(), vol 6678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21219-2_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-21219-2_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21218-5
Online ISBN: 978-3-642-21219-2
eBook Packages: Computer ScienceComputer Science (R0)