Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Identification Approach for Sea Surface Bubbles Detection

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6678))

Included in the following conference series:

  • 1831 Accesses

Abstract

In this work a novel system for bubbles detection on sea surface images is presented. This application is basic to verify radiometer satellite systems which are used to the study of the floor humidity and the sea salinity. 160 images of 8 kinds of salinity have been processed, 20 per class. Two main steps have been implemented: image pre-processing and enhancing in order to improve the bubbles features, and segmentation and bubbles detection. A combination system has been performed with Support Vector Machines (SVM) in order to detect the sea salinity, showing a recognition rate of 95.43%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Camps, A., Vall-llosera, M., Villarin, R., Reul, N., Chapron, B., Corbella, I., Duffo, N., Torres, F., Miranda, J.J., Sabia, R., Monerris, A., Rodríguez, R.: The Emissivity of Foam-Covered Water Surface at L-Band: Theorical Modeling and Experimental Results From the Frog 2003 Field Experiment. IEEE Transactions on Geoscience and Remote Sensing 43(5), 925–937 (2003)

    Article  Google Scholar 

  2. Villarino, R., Camps, A., Vall-llosera, M., Miranda, J., Arenas, J.: Sea Foam Effects on the Brightness Temperature at L-Band. In: IEEE International Geoscience and Remote Sensing Symposium IGARSS 2003, vol. 5, pp. 3076–3078 (2003)

    Google Scholar 

  3. Villarino, R.M.: Empirical Determination of the Sea Surface Emissivity at L-Band: A contribution to ESA’s SMOS Earth Explorer Mission. PhD Document, Polytechnic University of Catalonia, Spain (2004)

    Google Scholar 

  4. Corchado, E., Abraham, A., Carvalho, A.C.P.L.F.D.: Hybrid intelligent algorithms and applications. Inf. Sci., 2633-2634 (2010)

    Google Scholar 

  5. Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72, 2729–2730 (2009)

    Article  Google Scholar 

  6. Gonzalez, R.C., Wood, R.E.: Digital Image Processing. Addison- Wesley, London (2002)

    Google Scholar 

  7. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision. Thomson Engineering (2007)

    Google Scholar 

  8. Mokhtarian, F., Abbasi, S.: Matching shapes with self-intersections: application to leaf classification. IEEE Transactions on Image Processing 13(5), 653–661 (2004)

    Article  Google Scholar 

  9. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  10. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008)

    MATH  Google Scholar 

  11. Wang, L.P.: Support Vector Machines: Theory and Application. Springer, Berlin (2005)

    Book  Google Scholar 

  12. Kecman, V.: Learning and Soft Computing, Support Vector Machines, Neural Networks and Fuzzy Logic Models. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fuertes, J.J., Travieso, C.M., Alonso, J.B. (2011). Automatic Identification Approach for Sea Surface Bubbles Detection. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science(), vol 6678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21219-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21219-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21218-5

  • Online ISBN: 978-3-642-21219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics