Nothing Special   »   [go: up one dir, main page]

Skip to main content

Recognition of Digital Hyperplanes and Level Layers with Forbidden Points

  • Conference paper
Combinatorial Image Analysis (IWCIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6636))

Included in the following conference series:

Abstract

We consider a new problem of recognition of digital primitives – digital hyperplanes or level layers – arising in a new practical application of surface segmentation. Such problems are usually driven by a maximal thickness criterion which is not satisfactory for applications as soon as the dimension of the primitives becomes greater than 1. It is a good reason to introduce a more flexible approach where the set to recognize (whose points are called inliers) is given along with two other sets of outliers that should each remain on his own side of the primitive. We reduce this problem of recognition with outliers to the separation of three point clouds of ℝ d by two parallel hyperplanes and we provide a geometrical algorithm derived from the well-known GJK algorithm to solve the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity – A review. Discrete Applied Mathematics 155(4), 468–495 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brimkov, V.E., Dantchev, S.S.: Digital hyperplane recognition in arbitrary fixed dimension within an algebraic computation model. Image and Vision Computing 25(10), 1631–1643 (2007)

    Article  Google Scholar 

  3. Buzer, L.: An incremental linear time algorithm for digital line and plane recognition using a linear incremental feasibility problem. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 372–381. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Charrier, E., Buzer, L.: An efficient and quasi linear worst-case time algorithm for digital plane recognition. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 346–357. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Coeurjolly, D., Gerard, Y., Reveillès, J.P., Tougne, L.: An elementary algorithm for digital arc segmentation. Discrete Applied Mathematics 139(1-3), 31–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Debled-Rennesson, I., Reveillès, J.P.: A linear algorithm for segmentation of digital curves. International Journal of Pattern Recognition and Artificial Intelligence 9(4), 635–662 (1995)

    Article  Google Scholar 

  7. Gerard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane recognition algorithm. Discrete Applied Mathematics 151, 169–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gérard, Y., Provot, L., Feschet, F.: Introduction to digital level layers. In: Domenjoud, E. (ed.) DGCI 2011. LNCS, vol. 6607, pp. 83–94. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Gilbert, E.G., Johnson, D.W., Keerthi, S.S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Journal of Robotics and Automation 4, 193–203 (1988)

    Article  Google Scholar 

  10. Megiddo, N.: Linear programming in linear time when the dimension is fixed. Journal of the ACM 31(1), 114–127 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Provot, L., Debled-Rennesson, I.: 3D noisy discrete objects: Segmentation and application to smoothing. Pattern Recognition 42(8), 1626–1636 (2009)

    Article  MATH  Google Scholar 

  12. Sivignon, I., Coeurjolly, D.: From digital plane segmentation to polyhedral representation. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 356–367. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Zrour, R., Kenmochi, Y., Talbot, H., Buzer, L., Haman, Y., Shimizu, I., Sugimoto, A.: Optimal consensus set for digital line and plane fitting. International Journal of Imaging Systems and Technology (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Provot, L., Gerard, Y. (2011). Recognition of Digital Hyperplanes and Level Layers with Forbidden Points. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds) Combinatorial Image Analysis. IWCIA 2011. Lecture Notes in Computer Science, vol 6636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21073-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21073-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21072-3

  • Online ISBN: 978-3-642-21073-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics